aboutsummaryrefslogtreecommitdiffstats
path: root/Transceiver52M/Transceiver.cpp
blob: b88ec87768140f764fcba38de8ab032efed5bf2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
/*
* Copyright 2008, 2009, 2010 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <stdio.h>
#include <iomanip>      // std::setprecision
#include <fstream>
#include "Transceiver.h"
#include <Logger.h>

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

using namespace GSM;

#define USB_LATENCY_INTRVL		10,0

#if USE_UHD
#  define USB_LATENCY_MIN		6,7
#else
#  define USB_LATENCY_MIN		1,1
#endif

/* Number of running values use in noise average */
#define NOISE_CNT			20

TransceiverState::TransceiverState()
  : mRetrans(false), mNoiseLev(0.0), mNoises(NOISE_CNT), mPower(0.0)
{
  for (int i = 0; i < 8; i++) {
    chanType[i] = Transceiver::NONE;
    fillerModulus[i] = 26;
    chanResponse[i] = NULL;
    DFEForward[i] = NULL;
    DFEFeedback[i] = NULL;

    for (int n = 0; n < 102; n++)
      fillerTable[n][i] = NULL;
  }
}

TransceiverState::~TransceiverState()
{
  for (int i = 0; i < 8; i++) {
    delete chanResponse[i];
    delete DFEForward[i];
    delete DFEFeedback[i];

    for (int n = 0; n < 102; n++)
      delete fillerTable[n][i];
  }
}

static BitVector *genRandNormalBurst(size_t tsc)
{
  if (tsc > 7)
    return NULL;

  BitVector *bits = new BitVector(148);

  size_t i = 0;

  /* Tail bits */
  for (; i < 4; i++)
    (*bits)[i] = 0;

  /* Random bits */
  for (; i < 61; i++)
    (*bits)[i] = rand() % 2;

  /* Training sequence */
  for (int j = 0; i < 87; i++, j++)
    (*bits)[i] = GSM::gTrainingSequence[tsc][j];

  /* Random bits */
  for (; i < 144; i++)
    (*bits)[i] = rand() % 2;

  /* Tail bits */
  for (; i < 148; i++)
    (*bits)[i] = 0;

  return bits;
}

bool TransceiverState::init(int filler, size_t sps, float scale, size_t rtsc)
{
  BitVector *bits;
  signalVector *burst;

  if ((sps != 1) && (sps != 4))
    return false;

  for (size_t n = 0; n < 8; n++) {
    size_t guard = 8 + !(n % 4);
    size_t len = sps == 4 ? 625 : 148 + guard;

    for (size_t i = 0; i < 102; i++) {
      switch (filler) {
      case Transceiver::FILLER_DUMMY:
        burst = modulateBurst(gDummyBurst, guard, sps);
        break;
      case Transceiver::FILLER_RAND:
        bits = genRandNormalBurst(rtsc);
        burst = modulateBurst(*bits, guard, sps);
        delete bits;
        break;
      case Transceiver::FILLER_ZERO:
      default:
        burst = new signalVector(len);
      }

      scaleVector(*burst, scale);
      fillerTable[i][n] = burst;
    }

    if (filler == Transceiver::FILLER_RAND)
      chanType[n] = Transceiver::TSC;
  }

  return false;
}

Transceiver::Transceiver(int wBasePort,
                         const char *wTRXAddress,
                         size_t wSPS, size_t wChans,
                         GSM::Time wTransmitLatency,
                         RadioInterface *wRadioInterface,
                         double wRssiOffset)
  : mBasePort(wBasePort), mAddr(wTRXAddress),
    mTransmitLatency(wTransmitLatency), mRadioInterface(wRadioInterface),
    rssiOffset(wRssiOffset),
    mSPSTx(wSPS), mSPSRx(1), mChans(wChans), mOn(false),
    mTxFreq(0.0), mRxFreq(0.0), mTSC(0), mMaxExpectedDelay(0), mWriteBurstToDiskMask(0)
{
  txFullScale = mRadioInterface->fullScaleInputValue();
  rxFullScale = mRadioInterface->fullScaleOutputValue();

  for (int i = 0; i < 8; i++) {
    for (int j = 0; j < 8; j++)
      mHandover[i][j] = false;
  }
}

Transceiver::~Transceiver()
{
  stop();

  sigProcLibDestroy();

  for (size_t i = 0; i < mChans; i++) {
    mControlServiceLoopThreads[i]->cancel();
    mControlServiceLoopThreads[i]->join();
    delete mControlServiceLoopThreads[i];

    mTxPriorityQueues[i].clear();
    delete mCtrlSockets[i];
    delete mDataSockets[i];
    delete mClockSockets[i];
  }
}

/*
 * Initialize transceiver
 *
 * Start or restart the control loop. Any further control is handled through the
 * socket API. Randomize the central radio clock set the downlink burst
 * counters. Note that the clock will not update until the radio starts, but we
 * are still expected to report clock indications through control channel
 * activity.
 */
bool Transceiver::init(int filler, size_t rtsc)
{
  int t_srcport, t_dstport, d_srcport, d_dstport, c_srcport, c_dstport;

  if (!mChans) {
    LOG(ALERT) << "No channels assigned";
    return false;
  }

  if (!sigProcLibSetup(mSPSTx)) {
    LOG(ALERT) << "Failed to initialize signal processing library";
    return false;
  }

  mDataSockets.resize(mChans);
  mCtrlSockets.resize(mChans);
  mClockSockets.resize(mChans);
  mControlServiceLoopThreads.resize(mChans);
  mTxPriorityQueueServiceLoopThreads.resize(mChans);
  mRxServiceLoopThreads.resize(mChans);

  mTxPriorityQueues.resize(mChans);
  mReceiveFIFO.resize(mChans);
  mStates.resize(mChans);

  /* Filler table retransmissions - support only on channel 0 */
  if (filler == FILLER_DUMMY)
    mStates[0].mRetrans = true;

  /* Setup sockets */
  for (size_t i = 0; i < mChans; i++) {
    t_srcport = mBasePort + 3 * i;
    t_dstport = mBasePort + 3 * i + 100;
    c_srcport = mBasePort + 3 * i + 1;
    c_dstport = mBasePort + 3 * i + 101;
    d_srcport = mBasePort + 3 * i + 2;
    d_dstport = mBasePort + 3 * i + 102;

    mCtrlSockets[i] = new UDPSocket(c_srcport, mAddr.c_str(), c_dstport);
    mDataSockets[i] = new UDPSocket(d_srcport, mAddr.c_str(), d_dstport);
    mClockSockets[i] = new UDPSocket(t_srcport, mAddr.c_str(), t_dstport);
  }

  /* Randomize the central clock */
  GSM::Time startTime(random() % gHyperframe, 0);
  mRadioInterface->getClock()->set(startTime);
  mTransmitDeadlineClock = startTime;
  mLastClockUpdateTime = startTime;
  mLatencyUpdateTime = startTime;

  /* Start control threads */
  for (size_t i = 0; i < mChans; i++) {
    TransceiverChannel *chan = new TransceiverChannel(this, i);
    mControlServiceLoopThreads[i] = new Thread(32768);
    mControlServiceLoopThreads[i]->start((void * (*)(void*))
                                 ControlServiceLoopAdapter, (void*) chan);

    if (i && filler == FILLER_DUMMY)
      filler = FILLER_ZERO;

    mStates[i].init(filler, mSPSTx, txFullScale, rtsc);
  }

  return true;
}

/*
 * Start the transceiver
 *
 * Submit command(s) to the radio device to commence streaming samples and
 * launch threads to handle sample I/O. Re-synchronize the transmit burst
 * counters to the central radio clock here as well.
 */
bool Transceiver::start()
{
  ScopedLock lock(mLock);

  if (mOn) {
    LOG(ERR) << "Transceiver already running";
    return true;
  }

  LOG(NOTICE) << "Starting the transceiver";

  GSM::Time time = mRadioInterface->getClock()->get();
  mTransmitDeadlineClock = time;
  mLastClockUpdateTime = time;
  mLatencyUpdateTime = time;

  if (!mRadioInterface->start()) {
    LOG(ALERT) << "Device failed to start";
    return false;
  }

  /* Device is running - launch I/O threads */
  mRxLowerLoopThread = new Thread(32768);
  mTxLowerLoopThread = new Thread(32768);
  mTxLowerLoopThread->start((void * (*)(void*))
                            TxLowerLoopAdapter,(void*) this);
  mRxLowerLoopThread->start((void * (*)(void*))
                            RxLowerLoopAdapter,(void*) this);

  /* Launch uplink and downlink burst processing threads */
  for (size_t i = 0; i < mChans; i++) {
    TransceiverChannel *chan = new TransceiverChannel(this, i);
    mRxServiceLoopThreads[i] = new Thread(32768);
    mRxServiceLoopThreads[i]->start((void * (*)(void*))
                            RxUpperLoopAdapter, (void*) chan);

    chan = new TransceiverChannel(this, i);
    mTxPriorityQueueServiceLoopThreads[i] = new Thread(32768);
    mTxPriorityQueueServiceLoopThreads[i]->start((void * (*)(void*))
                            TxUpperLoopAdapter, (void*) chan);
  }

  writeClockInterface();
  mOn = true;
  return true;
}

/*
 * Stop the transceiver
 *
 * Perform stopping by disabling receive streaming and issuing cancellation
 * requests to running threads. Most threads will timeout and terminate once
 * device is disabled, but the transmit loop may block waiting on the central
 * UMTS clock. Explicitly signal the clock to make sure that the transmit loop
 * makes it to the thread cancellation point.
 */
void Transceiver::stop()
{
  ScopedLock lock(mLock);

  if (!mOn)
    return;

  LOG(NOTICE) << "Stopping the transceiver";
  mTxLowerLoopThread->cancel();
  mRxLowerLoopThread->cancel();

  for (size_t i = 0; i < mChans; i++) {
    mRxServiceLoopThreads[i]->cancel();
    mTxPriorityQueueServiceLoopThreads[i]->cancel();
  }

  LOG(INFO) << "Stopping the device";
  mRadioInterface->stop();

  for (size_t i = 0; i < mChans; i++) {
    mRxServiceLoopThreads[i]->join();
    mTxPriorityQueueServiceLoopThreads[i]->join();
    delete mRxServiceLoopThreads[i];
    delete mTxPriorityQueueServiceLoopThreads[i];

    mTxPriorityQueues[i].clear();
  }

  mTxLowerLoopThread->join();
  mRxLowerLoopThread->join();
  delete mTxLowerLoopThread;
  delete mRxLowerLoopThread;

  mOn = false;
  LOG(NOTICE) << "Transceiver stopped";
}

void Transceiver::addRadioVector(size_t chan, BitVector &bits,
                                 int RSSI, GSM::Time &wTime)
{
  signalVector *burst;
  radioVector *radio_burst;

  if (chan >= mTxPriorityQueues.size()) {
    LOG(ALERT) << "Invalid channel " << chan;
    return;
  }

  if (wTime.TN() > 7) {
    LOG(ALERT) << "Received burst with invalid slot " << wTime.TN();
    return;
  }

  burst = modulateBurst(bits, 8 + (wTime.TN() % 4 == 0), mSPSTx);
  scaleVector(*burst, txFullScale * pow(10, -RSSI / 10));

  radio_burst = new radioVector(wTime, burst);

  mTxPriorityQueues[chan].write(radio_burst);
}

void Transceiver::updateFillerTable(size_t chan, radioVector *burst)
{
  int TN, modFN;
  TransceiverState *state = &mStates[chan];

  TN = burst->getTime().TN();
  modFN = burst->getTime().FN() % state->fillerModulus[TN];

  delete state->fillerTable[modFN][TN];
  state->fillerTable[modFN][TN] = burst->getVector();
  burst->setVector(NULL);
}

void Transceiver::pushRadioVector(GSM::Time &nowTime)
{
  int TN, modFN;
  radioVector *burst;
  TransceiverState *state;
  std::vector<signalVector *> bursts(mChans);
  std::vector<bool> zeros(mChans);
  std::vector<bool> filler(mChans, true);

  for (size_t i = 0; i < mChans; i ++) {
    state = &mStates[i];

    while ((burst = mTxPriorityQueues[i].getStaleBurst(nowTime))) {
      LOG(NOTICE) << "dumping STALE burst in TRX->USRP interface";
      if (state->mRetrans)
        updateFillerTable(i, burst);
      delete burst;
    }

    TN = nowTime.TN();
    modFN = nowTime.FN() % state->fillerModulus[TN];

    bursts[i] = state->fillerTable[modFN][TN];
    zeros[i] = state->chanType[TN] == NONE;

    if ((burst = mTxPriorityQueues[i].getCurrentBurst(nowTime))) {
      bursts[i] = burst->getVector();

      if (state->mRetrans) {
        updateFillerTable(i, burst);
      } else {
        burst->setVector(NULL);
        filler[i] = false;
      }

      delete burst;
    }
  }

  mRadioInterface->driveTransmitRadio(bursts, zeros);

  for (size_t i = 0; i < mChans; i++) {
    if (!filler[i])
      delete bursts[i];
  }
}

void Transceiver::setModulus(size_t timeslot, size_t chan)
{
  TransceiverState *state = &mStates[chan];

  switch (state->chanType[timeslot]) {
  case NONE:
  case I:
  case II:
  case III:
  case FILL:
    state->fillerModulus[timeslot] = 26;
    break;
  case IV:
  case VI:
  case V:
    state->fillerModulus[timeslot] = 51;
    break;
    //case V: 
  case VII:
    state->fillerModulus[timeslot] = 102;
    break;
  case XIII:
    state->fillerModulus[timeslot] = 52;
    break;
  default:
    break;
  }
}


Transceiver::CorrType Transceiver::expectedCorrType(GSM::Time currTime,
                                                    size_t chan)
{
  static int tchh_subslot[26] = { 0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1 };
  static int sdcch4_subslot[102] = { 3,3,3,3,0,0,2,2,2,2,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,2,2,2,2,
                                     3,3,3,3,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,2,2,2,2 };
  static int sdcch8_subslot[102] = { 5,5,5,5,6,6,6,6,7,7,7,7,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,0,0,0,0,
                                     1,1,1,1,2,2,2,2,3,3,3,3,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,4,4,4,4 };
  TransceiverState *state = &mStates[chan];
  unsigned burstTN = currTime.TN();
  unsigned burstFN = currTime.FN();
  int subch;

  switch (state->chanType[burstTN]) {
  case NONE:
    return OFF;
    break;
  case FILL:
    return IDLE;
    break;
  case I:
    // TODO: Are we expecting RACH on an IDLE frame?
/*    if (burstFN % 26 == 25)
      return IDLE;*/
    if (mHandover[burstTN][0])
      return RACH;
    return TSC;
    break;
  case II:
    subch = tchh_subslot[burstFN % 26];
    if (subch == 1)
      return IDLE;
    if (mHandover[burstTN][0])
      return RACH;
    return TSC;
    break;
  case III:
    subch = tchh_subslot[burstFN % 26];
    if (mHandover[burstTN][subch])
      return RACH;
    return TSC;
    break;
  case IV:
  case VI:
    return RACH;
    break;
  case V: {
    int mod51 = burstFN % 51;
    if ((mod51 <= 36) && (mod51 >= 14))
      return RACH;
    else if ((mod51 == 4) || (mod51 == 5))
      return RACH;
    else if ((mod51 == 45) || (mod51 == 46))
      return RACH;
    else if (mHandover[burstTN][sdcch4_subslot[burstFN % 102]])
      return RACH;
    else
      return TSC;
    break;
  }
  case VII:
    if ((burstFN % 51 <= 14) && (burstFN % 51 >= 12))
      return IDLE;
    else if (mHandover[burstTN][sdcch8_subslot[burstFN % 102]])
      return RACH;
    else
      return TSC;
    break;
  case XIII: {
    int mod52 = burstFN % 52;
    if ((mod52 == 12) || (mod52 == 38))
      return RACH;
    else if ((mod52 == 25) || (mod52 == 51))
      return IDLE;
    else
      return TSC;
    break;
  }
  case LOOPBACK:
    if ((burstFN % 51 <= 50) && (burstFN % 51 >=48))
      return IDLE;
    else
      return TSC;
    break;
  default:
    return OFF;
    break;
  }
}

/* 
 * Detect RACH synchronization sequence within a burst. No equalization
 * is used or available on the RACH channel.
 */
int Transceiver::detectRACH(TransceiverState *state,
                            signalVector &burst,
                            complex &amp, float &toa)
{
  float threshold = 6.0;

  return detectRACHBurst(burst, threshold, mSPSRx, amp, toa);
}

/*
 * Detect normal burst training sequence midamble. Update equalization
 * state information and channel estimate if necessary. Equalization
 * is currently disabled.
 */
int Transceiver::detectTSC(TransceiverState *state, signalVector &burst,
                           complex &amp, float &toa, GSM::Time &time)
{
  int success;
  int tn = time.TN();
  float chanOffset, threshold = 5.0;
  bool needDFE = false, estimateChan = false;
  double elapsed = time - state->chanEstimateTime[tn];
  signalVector *chanResp;

  /* Check equalization update state */
  if (needDFE && ((elapsed > 50) || (!state->chanResponse[tn]))) {
    delete state->DFEForward[tn];
    delete state->DFEFeedback[tn];
    state->DFEForward[tn] = NULL;
    state->DFEFeedback[tn] = NULL;

    estimateChan = true;
  }

  /* Detect normal burst midambles */
  success = analyzeTrafficBurst(burst, mTSC, threshold, mSPSRx, amp,
                                toa, mMaxExpectedDelay, estimateChan,
                                &chanResp, &chanOffset);
  if (success <= 0) {
    return success;
  }

  /* Set equalizer if unabled */
  if (needDFE && estimateChan) {
     float noise = state->mNoiseLev;
     state->SNRestimate[tn] = amp.norm2() / (noise * noise + 1.0);

     state->chanResponse[tn] = chanResp;
     state->chanRespOffset[tn] = chanOffset;
     state->chanRespAmplitude[tn] = amp;

     scaleVector(*chanResp, complex(1.0, 0.0) / amp);

     designDFE(*chanResp, state->SNRestimate[tn],
               7, &state->DFEForward[tn], &state->DFEFeedback[tn]);

     state->chanEstimateTime[tn] = time;
  }

  return 1;
}

/*
 * Demodulate GMSK burst using equalization if requested. Otherwise
 * demodulate by direct rotation and soft slicing.
 */
SoftVector *Transceiver::demodulate(TransceiverState *state,
                                    signalVector &burst, complex amp,
                                    float toa, size_t tn, bool equalize)
{
  if (equalize) {
    scaleVector(burst, complex(1.0, 0.0) / amp);
    return equalizeBurst(burst,
                         toa - state->chanRespOffset[tn],
                         mSPSRx,
                         *state->DFEForward[tn],
                         *state->DFEFeedback[tn]);
  }

  return demodulateBurst(burst, mSPSRx, amp, toa);
}

void writeToFile(radioVector *radio_burst, size_t chan)
{
  GSM::Time time = radio_burst->getTime();
  std::ostringstream fname;
  fname << chan << "_" << time.FN() << "_" << time.TN() << ".fc";
  std::ofstream outfile (fname.str().c_str(), std::ofstream::binary);
  outfile.write((char*)radio_burst->getVector()->begin(), radio_burst->getVector()->size() * 2 * sizeof(float));
  outfile.close();
}

/*
 * Pull bursts from the FIFO and handle according to the slot
 * and burst correlation type. Equalzation is currently disabled. 
 */
SoftVector *Transceiver::pullRadioVector(GSM::Time &wTime, double &RSSI, bool &isRssiValid,
                                         double &timingOffset, double &noise,
                                         size_t chan)
{
  int success;
  bool equalize = false;
  complex amp;
  float toa, pow, max = -1.0, avg = 0.0;
  int max_i = -1;
  signalVector *burst;
  SoftVector *bits = NULL;
  TransceiverState *state = &mStates[chan];
  isRssiValid = false;

  /* Blocking FIFO read */
  radioVector *radio_burst = mReceiveFIFO[chan]->read();
  if (!radio_burst)
    return NULL;

  /* Set time and determine correlation type */
  GSM::Time time = radio_burst->getTime();
  CorrType type = expectedCorrType(time, chan);

  /* Debug: dump bursts to disk */
  /* bits 0-7  - chan 0 timeslots
   * bits 8-15 - chan 1 timeslots */
  if (mWriteBurstToDiskMask & ((1<<time.TN()) << (8*chan)))
    writeToFile(radio_burst, chan);

  /* No processing if the timeslot is off.
   * Not even power level or noise calculation. */
  if (type == OFF) {
    delete radio_burst;
    return NULL;
  }

  /* Select the diversity channel with highest energy */
  for (size_t i = 0; i < radio_burst->chans(); i++) {
    energyDetect(*radio_burst->getVector(i), 20 * mSPSRx, 0.0, &pow);
    if (pow > max) {
      max = pow;
      max_i = i;
    }
    avg += pow;
  }

  if (max_i < 0) {
    LOG(ALERT) << "Received empty burst";
    delete radio_burst;
    return NULL;
  }

  /* Average noise on diversity paths and update global levels */
  burst = radio_burst->getVector(max_i);
  avg = sqrt(avg / radio_burst->chans());

  wTime = time;
  RSSI = 20.0 * log10(rxFullScale / avg);

  /* RSSI estimation are valid */
  isRssiValid = true;

  if (type == IDLE) {
    /* Update noise levels */
    state->mNoises.insert(avg);
    state->mNoiseLev = state->mNoises.avg();
    noise = 20.0 * log10(rxFullScale / state->mNoiseLev);

    delete radio_burst;
    return NULL;
  } else {
    /* Do not update noise levels */
    noise = 20.0 * log10(rxFullScale / state->mNoiseLev);
  }

  /* Detect normal or RACH bursts */
  if (type == TSC)
    success = detectTSC(state, *burst, amp, toa, time);
  else
    success = detectRACH(state, *burst, amp, toa);

  /* Alert an error and exit */
  if (success <= 0) {
    if (success == -SIGERR_CLIP) {
      LOG(WARNING) << "Clipping detected on received RACH or Normal Burst";
    } else if (success != SIGERR_NONE) {
      LOG(WARNING) << "Unhandled RACH or Normal Burst detection error";
    }

    delete radio_burst;
    return NULL;
  }

  timingOffset = toa / mSPSRx;

  /* Demodulate and set output info */
  if (equalize && (type != TSC))
    equalize = false;

  bits = demodulate(state, *burst, amp, toa, time.TN(), equalize);

  delete radio_burst;
  return bits;
}

void Transceiver::reset()
{
  for (size_t i = 0; i < mTxPriorityQueues.size(); i++)
    mTxPriorityQueues[i].clear();
}

  
void Transceiver::driveControl(size_t chan)
{
  int MAX_PACKET_LENGTH = 100;

  // check control socket
  char buffer[MAX_PACKET_LENGTH];
  int msgLen = -1;
  buffer[0] = '\0';

  msgLen = mCtrlSockets[chan]->read(buffer);

  if (msgLen < 1) {
    return;
  }

  char cmdcheck[4];
  char command[MAX_PACKET_LENGTH];
  char response[MAX_PACKET_LENGTH];

  sscanf(buffer,"%3s %s",cmdcheck,command);

  if (!chan)
    writeClockInterface();

  if (strcmp(cmdcheck,"CMD")!=0) {
    LOG(WARNING) << "bogus message on control interface";
    return;
  }
  LOG(INFO) << "command is " << buffer;

  if (strcmp(command,"POWEROFF")==0) {
    stop();
    sprintf(response,"RSP POWEROFF 0");
  }
  else if (strcmp(command,"POWERON")==0) {
    if (!start())
      sprintf(response,"RSP POWERON 1");
    else
      sprintf(response,"RSP POWERON 0");
      for (int i = 0; i < 8; i++) {
        for (int j = 0; j < 8; j++)
          mHandover[i][j] = false;
      }
  }
  else if (strcmp(command,"HANDOVER")==0){
    int ts=0,ss=0;
    sscanf(buffer,"%3s %s %d %d",cmdcheck,command,&ts,&ss);
    mHandover[ts][ss] = true;
    LOG(WARNING) << "HANDOVER RACH at timeslot " << ts << " subslot " << ss;
    sprintf(response,"RSP HANDOVER 0 %d %d",ts,ss);
  }
  else if (strcmp(command,"NOHANDOVER")==0){
    int ts=0,ss=0;
    sscanf(buffer,"%3s %s %d %d",cmdcheck,command,&ts,&ss);
    mHandover[ts][ss] = false;
    LOG(WARNING) << "NOHANDOVER at timeslot " << ts << " subslot " << ss;
    sprintf(response,"RSP NOHANDOVER 0 %d %d",ts,ss);
  }
  else if (strcmp(command,"SETMAXDLY")==0) {
    //set expected maximum time-of-arrival
    int maxDelay;
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&maxDelay);
    mMaxExpectedDelay = maxDelay; // 1 GSM symbol is approx. 1 km
    sprintf(response,"RSP SETMAXDLY 0 %d",maxDelay);
  }
  else if (strcmp(command,"SETRXGAIN")==0) {
    //set expected maximum time-of-arrival
    int newGain;
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&newGain);
    newGain = mRadioInterface->setRxGain(newGain, chan);
    sprintf(response,"RSP SETRXGAIN 0 %d",newGain);
  }
  else if (strcmp(command,"NOISELEV")==0) {
    if (mOn) {
      float lev = mStates[chan].mNoiseLev;
      sprintf(response,"RSP NOISELEV 0 %d",
              (int) round(20.0 * log10(rxFullScale / lev)));
    }
    else {
      sprintf(response,"RSP NOISELEV 1  0");
    }
  }
  else if (!strcmp(command, "SETPOWER")) {
    int power;
    sscanf(buffer, "%3s %s %d", cmdcheck, command, &power);
    power = mRadioInterface->setPowerAttenuation(power, chan);
    mStates[chan].mPower = power;
    sprintf(response, "RSP SETPOWER 0 %d", power);
  }
  else if (!strcmp(command,"ADJPOWER")) {
    int power, step;
    sscanf(buffer, "%3s %s %d", cmdcheck, command, &step);
    power = mStates[chan].mPower + step;
    power = mRadioInterface->setPowerAttenuation(power, chan);
    mStates[chan].mPower = power;
    sprintf(response, "RSP ADJPOWER 0 %d", power);
  }
  else if (strcmp(command,"RXTUNE")==0) {
    // tune receiver
    int freqKhz;
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
    mRxFreq = freqKhz * 1e3;
    if (!mRadioInterface->tuneRx(mRxFreq, chan)) {
       LOG(ALERT) << "RX failed to tune";
       sprintf(response,"RSP RXTUNE 1 %d",freqKhz);
    }
    else
       sprintf(response,"RSP RXTUNE 0 %d",freqKhz);
  }
  else if (strcmp(command,"TXTUNE")==0) {
    // tune txmtr
    int freqKhz;
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
    mTxFreq = freqKhz * 1e3;
    if (!mRadioInterface->tuneTx(mTxFreq, chan)) {
       LOG(ALERT) << "TX failed to tune";
       sprintf(response,"RSP TXTUNE 1 %d",freqKhz);
    }
    else
       sprintf(response,"RSP TXTUNE 0 %d",freqKhz);
  }
  else if (!strcmp(command,"SETTSC")) {
    // set TSC
    unsigned TSC;
    sscanf(buffer, "%3s %s %d", cmdcheck, command, &TSC);
    if (mOn || (TSC < 0) || (TSC > 7))
      sprintf(response, "RSP SETTSC 1 %d", TSC);
    else if (chan && (TSC != mTSC))
      sprintf(response, "RSP SETTSC 1 %d", TSC);
    else {
      mTSC = TSC;
      generateMidamble(mSPSRx, TSC);
      sprintf(response,"RSP SETTSC 0 %d", TSC);
    }
  }
  else if (strcmp(command,"SETSLOT")==0) {
    // set slot type
    int  corrCode;
    int  timeslot;
    sscanf(buffer,"%3s %s %d %d",cmdcheck,command,&timeslot,&corrCode);
    if ((timeslot < 0) || (timeslot > 7)) {
      LOG(WARNING) << "bogus message on control interface";
      sprintf(response,"RSP SETSLOT 1 %d %d",timeslot,corrCode);
      return;
    }     
    mStates[chan].chanType[timeslot] = (ChannelCombination) corrCode;
    setModulus(timeslot, chan);
    sprintf(response,"RSP SETSLOT 0 %d %d",timeslot,corrCode);

  }
  else if (strcmp(command,"_SETBURSTTODISKMASK")==0) {
    // debug command! may change or disapear without notice
    // set a mask which bursts to dump to disk
    int mask;
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&mask);
    mWriteBurstToDiskMask = mask;
    sprintf(response,"RSP _SETBURSTTODISKMASK 0 %d",mask);
  }
  else {
    LOG(WARNING) << "bogus command " << command << " on control interface.";
    sprintf(response,"RSP ERR 1");
  }

  mCtrlSockets[chan]->write(response, strlen(response) + 1);
}

bool Transceiver::driveTxPriorityQueue(size_t chan)
{
  char buffer[gSlotLen+50];

  // check data socket
  size_t msgLen = mDataSockets[chan]->read(buffer);

  if (msgLen!=gSlotLen+1+4+1) {
    LOG(ERR) << "badly formatted packet on GSM->TRX interface";
    return false;
  }

  int timeSlot = (int) buffer[0];
  uint64_t frameNum = 0;
  for (int i = 0; i < 4; i++)
    frameNum = (frameNum << 8) | (0x0ff & buffer[i+1]);

  LOG(DEBUG) << "rcvd. burst at: " << GSM::Time(frameNum,timeSlot);
  
  int RSSI = (int) buffer[5];
  static BitVector newBurst(gSlotLen);
  BitVector::iterator itr = newBurst.begin();
  char *bufferItr = buffer+6;
  while (itr < newBurst.end()) 
    *itr++ = *bufferItr++;
  
  GSM::Time currTime = GSM::Time(frameNum,timeSlot);

  addRadioVector(chan, newBurst, RSSI, currTime);

  return true;


}

void Transceiver::driveReceiveRadio()
{
  if (!mRadioInterface->driveReceiveRadio()) {
    usleep(100000);
  } else {
    if (mTransmitDeadlineClock > mLastClockUpdateTime + GSM::Time(216,0))
      writeClockInterface();
  }
}

void Transceiver::driveReceiveFIFO(size_t chan)
{
  SoftVector *rxBurst = NULL;
  double RSSI; // in dBFS
  double dBm;  // in dBm
  double TOA;  // in symbols
  int TOAint;  // in 1/256 symbols
  double noise; // noise level in dBFS
  GSM::Time burstTime;
  bool isRssiValid; // are RSSI, noise and burstTime valid

  rxBurst = pullRadioVector(burstTime, RSSI, isRssiValid, TOA, noise, chan);

  if (rxBurst) { 
    dBm = RSSI+rssiOffset;
    TOAint = (int) (TOA * 256.0 + 0.5); // round to closest integer

	LOG(DEBUG) << std::fixed << std::right
      << " time: "   << burstTime
	  << " RSSI: "   << std::setw(5) << std::setprecision(1) << RSSI << "dBFS/" << std::setw(6) << -dBm << "dBm"
	  << " noise: "  << std::setw(5) << std::setprecision(1) << noise << "dBFS/" << std::setw(6) << -(noise+rssiOffset) << "dBm"
	  << " TOA: "    << std::setw(5) << std::setprecision(2) << TOA
      << " bits: "   << *rxBurst;

    char burstString[gSlotLen+10];
    burstString[0] = burstTime.TN();
    for (int i = 0; i < 4; i++)
      burstString[1+i] = (burstTime.FN() >> ((3-i)*8)) & 0x0ff;
    burstString[5] = (int)dBm;
    burstString[6] = (TOAint >> 8) & 0x0ff;
    burstString[7] = TOAint & 0x0ff;
    SoftVector::iterator burstItr = rxBurst->begin();

    for (unsigned int i = 0; i < gSlotLen; i++) {
      burstString[8+i] =(char) round((*burstItr++)*255.0);
    }
    burstString[gSlotLen+9] = '\0';
    delete rxBurst;

    mDataSockets[chan]->write(burstString,gSlotLen+10);
  }
}

void Transceiver::driveTxFIFO()
{

  /**
      Features a carefully controlled latency mechanism, to 
      assure that transmit packets arrive at the radio/USRP
      before they need to be transmitted.

      Deadline clock indicates the burst that needs to be
      pushed into the FIFO right NOW.  If transmit queue does
      not have a burst, stick in filler data.
  */


  RadioClock *radioClock = (mRadioInterface->getClock());
  
  if (mOn) {
    //radioClock->wait(); // wait until clock updates
    LOG(DEBUG) << "radio clock " << radioClock->get();
    while (radioClock->get() + mTransmitLatency > mTransmitDeadlineClock) {
      // if underrun, then we're not providing bursts to radio/USRP fast
      //   enough.  Need to increase latency by one GSM frame.
      if (mRadioInterface->getWindowType() == RadioDevice::TX_WINDOW_USRP1) {
        if (mRadioInterface->isUnderrun()) {
          // only update latency at the defined frame interval
          if (radioClock->get() > mLatencyUpdateTime + GSM::Time(USB_LATENCY_INTRVL)) {
            mTransmitLatency = mTransmitLatency + GSM::Time(1,0);
            LOG(INFO) << "new latency: " << mTransmitLatency;
            mLatencyUpdateTime = radioClock->get();
          }
        }
        else {
          // if underrun hasn't occurred in the last sec (216 frames) drop
          //    transmit latency by a timeslot
          if (mTransmitLatency > GSM::Time(USB_LATENCY_MIN)) {
              if (radioClock->get() > mLatencyUpdateTime + GSM::Time(216,0)) {
              mTransmitLatency.decTN();
              LOG(INFO) << "reduced latency: " << mTransmitLatency;
              mLatencyUpdateTime = radioClock->get();
            }
          }
        }
      }
      // time to push burst to transmit FIFO
      pushRadioVector(mTransmitDeadlineClock);
      mTransmitDeadlineClock.incTN();
    }
  }

  radioClock->wait();
}



void Transceiver::writeClockInterface()
{
  char command[50];
  // FIXME -- This should be adaptive.
  sprintf(command,"IND CLOCK %llu",(unsigned long long) (mTransmitDeadlineClock.FN()+2));

  LOG(INFO) << "ClockInterface: sending " << command;

  for (size_t i=0; i<mClockSockets.size(); i++)
    mClockSockets[i]->write(command, strlen(command) + 1);

  mLastClockUpdateTime = mTransmitDeadlineClock;

}

void *RxUpperLoopAdapter(TransceiverChannel *chan)
{
  Transceiver *trx = chan->trx;
  size_t num = chan->num;

  delete chan;

  trx->setPriority(0.42);

  while (1) {
    trx->driveReceiveFIFO(num);
    pthread_testcancel();
  }
  return NULL;
}

void *RxLowerLoopAdapter(Transceiver *transceiver)
{
  transceiver->setPriority(0.45);

  while (1) {
    transceiver->driveReceiveRadio();
    pthread_testcancel();
  }
  return NULL;
}

void *TxLowerLoopAdapter(Transceiver *transceiver)
{
  transceiver->setPriority(0.44);

  while (1) {
    transceiver->driveTxFIFO();
    pthread_testcancel();
  }
  return NULL;
}

void *ControlServiceLoopAdapter(TransceiverChannel *chan)
{
  Transceiver *trx = chan->trx;
  size_t num = chan->num;

  delete chan;

  while (1) {
    trx->driveControl(num);
    pthread_testcancel();
  }
  return NULL;
}

void *TxUpperLoopAdapter(TransceiverChannel *chan)
{
  Transceiver *trx = chan->trx;
  size_t num = chan->num;

  delete chan;

  trx->setPriority(0.40);

  while (1) {
    trx->driveTxPriorityQueue(num);
    pthread_testcancel();
  }
  return NULL;
}