aboutsummaryrefslogtreecommitdiffstats
path: root/CommonLibs/BitVector.h
blob: e244be7faa7be3cfeaa013669eb4b988a0701448 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.

	This program is free software: you can redistribute it and/or modify
	it under the terms of the GNU Affero General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU Affero General Public License for more details.

	You should have received a copy of the GNU Affero General Public License
	along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/


#ifndef FECVECTORS_H
#define FECVECTORS_H

#include "Vector.h"
#include <stdint.h>


class BitVector;
class SoftVector;



/** Shift-register (LFSR) generator. */
class Generator {

	private:

	uint64_t mCoeff;	///< polynomial coefficients. LSB is zero exponent.
	uint64_t mState;	///< shift register state. LSB is most recent.
	uint64_t mMask;		///< mask for reading state
	unsigned mLen;		///< number of bits used in shift register
	unsigned mLen_1;	///< mLen - 1

	public:

	Generator(uint64_t wCoeff, unsigned wLen)
		:mCoeff(wCoeff),mState(0),
		mMask((1ULL<<wLen)-1),
		mLen(wLen),mLen_1(wLen-1)
	{ assert(wLen<64); }

	void clear() { mState=0; }

	/**@name Accessors */
	//@{
	uint64_t state() const { return mState & mMask; }
	unsigned size() const { return mLen; }
	//@}

	/**
		Calculate one bit of a syndrome.
		This is in the .h for inlining.
	*/
	void syndromeShift(unsigned inBit)
	{
		const unsigned fb = (mState>>(mLen_1)) & 0x01;
		mState = (mState<<1) ^ (inBit & 0x01);
		if (fb) mState ^= mCoeff;
	}

	/**
		Update the generator state by one cycle.
		This is in the .h for inlining.
	*/
	void encoderShift(unsigned inBit)
	{
		const unsigned fb = ((mState>>(mLen_1)) ^ inBit) & 0x01;
		mState <<= 1;
		if (fb) mState ^= mCoeff;
	}


};




/** Parity (CRC-type) generator and checker based on a Generator. */
class Parity : public Generator {

	protected:

	unsigned mCodewordSize;

	public:

	Parity(uint64_t wCoefficients, unsigned wParitySize, unsigned wCodewordSize)
		:Generator(wCoefficients, wParitySize),
		mCodewordSize(wCodewordSize)
	{ }

	/** Compute the parity word and write it into the target segment.  */
	void writeParityWord(const BitVector& data, BitVector& parityWordTarget, bool invert=true);

	/** Compute the syndrome of a received sequence. */
	uint64_t syndrome(const BitVector& receivedCodeword);
};




/**
	Class to represent convolutional coders/decoders of rate 1/2, memory length 4.
	This is the "workhorse" coder for most GSM channels.
*/
class ViterbiR2O4 {

	private:
		/**name Lots of precomputed elements so the compiler can optimize like hell. */
		//@{
		/**@name Core values. */
		//@{
		static const unsigned mIRate = 2;	///< reciprocal of rate
		static const unsigned mOrder = 4;	///< memory length of generators
		//@}
		/**@name Derived values. */
		//@{
		static const unsigned mIStates = 0x01 << mOrder;	///< number of states, number of survivors
		static const uint32_t mSMask = mIStates-1;			///< survivor mask
		static const uint32_t mCMask = (mSMask<<1) | 0x01;	///< candidate mask
		static const uint32_t mOMask = (0x01<<mIRate)-1;	///< ouput mask, all iRate low bits set
		static const unsigned mNumCands = mIStates*2;		///< number of candidates to generate during branching
		static const unsigned mDeferral = 6*mOrder;			///< deferral to be used
		//@}
		//@}

		/** Precomputed tables. */
		//@{
		uint32_t mCoeffs[mIRate];					///< polynomial for each generator
		uint32_t mStateTable[mIRate][2*mIStates];	///< precomputed generator output tables
		uint32_t mGeneratorTable[2*mIStates];		///< precomputed coder output table
		//@}
	
	public:

		/**
		  A candidate sequence in a Viterbi decoder.
		  The 32-bit state register can support a deferral of 6 with a 4th-order coder.
		 */
		typedef struct candStruct {
			uint32_t iState;	///< encoder input associated with this candidate
			uint32_t oState;	///< encoder output associated with this candidate
			float cost;			///< cost (metric value), float to support soft inputs
		} vCand;

		/** Clear a structure. */
		void clear(vCand& v)
		{
			v.iState=0;
			v.oState=0;
			v.cost=0;
		}
		

	private:

		/**@name Survivors and candidates. */
		//@{
		vCand mSurvivors[mIStates];			///< current survivor pool
		vCand mCandidates[2*mIStates];		///< current candidate pool
		//@}

	public:

		unsigned iRate() const { return mIRate; }
		uint32_t cMask() const { return mCMask; }
		uint32_t stateTable(unsigned g, unsigned i) const { return mStateTable[g][i]; }
		unsigned deferral() const { return mDeferral; }
		

		ViterbiR2O4();

		/** Set all cost metrics to zero. */
		void initializeStates();

		/**
			Full cycle of the Viterbi algorithm: branch, metrics, prune, select.
			@return reference to minimum-cost candidate.
		*/
		const vCand& step(uint32_t inSample, const float *probs, const float *iprobs);

	private:

		/** Branch survivors into new candidates. */
		void branchCandidates();

		/** Compute cost metrics for soft-inputs. */
		void getSoftCostMetrics(uint32_t inSample, const float *probs, const float *iprobs);

		/** Select survivors from the candidate set. */
		void pruneCandidates();

		/** Find the minimum cost survivor. */
		const vCand& minCost() const;

		/**
			Precompute the state tables.
			@param g Generator index 0..((1/rate)-1)
		*/
		void computeStateTables(unsigned g);

		/**
			Precompute the generator outputs.
			mCoeffs must be defined first.
		*/
		void computeGeneratorTable();

};




class BitVector : public Vector<char> {


	public:

	/**@name Constructors. */
	//@{

	/**@name Casts of Vector constructors. */
	//@{
	BitVector(char* wData, char* wStart, char* wEnd)
		:Vector<char>(wData,wStart,wEnd)
	{ }
	BitVector(size_t len=0):Vector<char>(len) {}
	BitVector(const Vector<char>& source):Vector<char>(source) {}
	BitVector(Vector<char>& source):Vector<char>(source) {}
	BitVector(const Vector<char>& source1, const Vector<char> source2):Vector<char>(source1,source2) {}
	//@}

	/** Construct from a string of "0" and "1". */
	BitVector(const char* valString);
	//@}

	/** Index a single bit. */
	bool bit(size_t index) const
	{
		// We put this code in .h for fast inlining.
		const char *dp = mStart+index;
		assert(dp<mEnd);
		return (*dp) & 0x01;
	}

	/**@name Casts and overrides of Vector operators. */
	//@{
	BitVector segment(size_t start, size_t span)
	{
		char* wStart = mStart + start;
		char* wEnd = wStart + span;
		assert(wEnd<=mEnd);
		return BitVector(NULL,wStart,wEnd);
	}

	BitVector alias()
		{ return segment(0,size()); }

	const BitVector segment(size_t start, size_t span) const
		{ return (BitVector)(Vector<char>::segment(start,span)); }

	BitVector head(size_t span) { return segment(0,span); }
	const BitVector head(size_t span) const { return segment(0,span); }
	BitVector tail(size_t start) { return segment(start,size()-start); }
	const BitVector tail(size_t start) const { return segment(start,size()-start); }
	//@}


	void zero() { fill(0); }

	/**@name FEC operations. */
	//@{
	/** Calculate the syndrome of the vector with the given Generator. */
	uint64_t syndrome(Generator& gen) const;
	/** Calculate the parity word for the vector with the given Generator. */
	uint64_t parity(Generator& gen) const;
	/** Encode the signal with the GSM rate 1/2 convolutional encoder. */
	void encode(const ViterbiR2O4& encoder, BitVector& target);
	//@}


	/** Invert 0<->1. */
	void invert();

	/**@name Byte-wise operations. */
	//@{
	/** Reverse an 8-bit vector. */
	void reverse8();
	/** Reverse groups of 8 within the vector (byte reversal). */
	void LSB8MSB();
	//@}

	/**@name Serialization and deserialization. */
	//@{
	uint64_t peekField(size_t readIndex, unsigned length) const;
	uint64_t peekFieldReversed(size_t readIndex, unsigned length) const;
	uint64_t readField(size_t& readIndex, unsigned length) const;
	uint64_t readFieldReversed(size_t& readIndex, unsigned length) const;
	void fillField(size_t writeIndex, uint64_t value, unsigned length);
	void fillFieldReversed(size_t writeIndex, uint64_t value, unsigned length);
	void writeField(size_t& writeIndex, uint64_t value, unsigned length);
	void writeFieldReversed(size_t& writeIndex, uint64_t value, unsigned length);
	void write0(size_t& writeIndex) { writeField(writeIndex,0,1); }
	void write1(size_t& writeIndex) { writeField(writeIndex,1,1); }

	//@}

	/** Sum of bits. */
	unsigned sum() const;

	/** Reorder bits, dest[i] = this[map[i]]. */
	void map(const unsigned *map, size_t mapSize, BitVector& dest) const;

	/** Reorder bits, dest[map[i]] = this[i]. */
	void unmap(const unsigned *map, size_t mapSize, BitVector& dest) const;

	/** Pack into a char array. */
	void pack(unsigned char*) const;

	/** Unpack from a char array. */
	void unpack(const unsigned char*);

	/** Make a hexdump string. */
	void hex(std::ostream&) const;
	std::string hexstr() const;

	/** Unpack from a hexdump string.
	*  @returns true on success, false on error. */
	bool unhex(const char*);

	void set(BitVector other)	// That's right.  No ampersand.
	{
		clear();
		mData=other.mData;
		mStart=other.mStart;
		mEnd=other.mEnd;
		other.mData=NULL;
	}

	void settfb(int i, int j) const
	{
		mStart[i] = j;
	}

};



std::ostream& operator<<(std::ostream&, const BitVector&);






/**
  The SoftVector class is used to represent a soft-decision signal.
  Values 0..1 represent probabilities that a bit is "true".
 */
class SoftVector: public Vector<float> {

	public:

	/** Build a SoftVector of a given length. */
	SoftVector(size_t wSize=0):Vector<float>(wSize) {}

	/** Construct a SoftVector from a C string of "0", "1", and "X". */
	SoftVector(const char* valString);

	/** Construct a SoftVector from a BitVector. */
	SoftVector(const BitVector& source);

	/**
		Wrap a SoftVector around a block of floats.
		The block will be delete[]ed upon desctuction.
	*/
	SoftVector(float *wData, unsigned length)
		:Vector<float>(wData,length)
	{}

	SoftVector(float* wData, float* wStart, float* wEnd)
		:Vector<float>(wData,wStart,wEnd)
	{ }

	/**
		Casting from a Vector<float>.
		Note that this is NOT pass-by-reference.
	*/
	SoftVector(Vector<float> source)
		:Vector<float>(source)
	{}


	/**@name Casts and overrides of Vector operators. */
	//@{
	SoftVector segment(size_t start, size_t span)
	{
		float* wStart = mStart + start;
		float* wEnd = wStart + span;
		assert(wEnd<=mEnd);
		return SoftVector(NULL,wStart,wEnd);
	}

	SoftVector alias()
		{ return segment(0,size()); }

	const SoftVector segment(size_t start, size_t span) const
		{ return (SoftVector)(Vector<float>::segment(start,span)); }

	SoftVector head(size_t span) { return segment(0,span); }
	const SoftVector head(size_t span) const { return segment(0,span); }
	SoftVector tail(size_t start) { return segment(start,size()-start); }
	const SoftVector tail(size_t start) const { return segment(start,size()-start); }
	//@}

	/** Decode soft symbols with the GSM rate-1/2 Viterbi decoder. */
	void decode(ViterbiR2O4 &decoder, BitVector& target) const;

	// (pat) How good is the SoftVector in the sense of the bits being solid?
	// Result of 1 is perfect and 0 means all the bits were 0.5
	// If plow is non-NULL, also return the lowest energy bit.
	float getEnergy(float *low=0) const;

	/** Fill with "unknown" values. */
	void unknown() { fill(0.5F); }

	/** Return a hard bit value from a given index by slicing. */
	bool bit(size_t index) const
	{
		const float *dp = mStart+index;
		assert(dp<mEnd);
		return (*dp)>0.5F;
	}

	/** Slice the whole signal into bits. */
	BitVector sliced() const;

};



std::ostream& operator<<(std::ostream&, const SoftVector&);






#endif
// vim: ts=4 sw=4