/* * SSE Convolution * Copyright (C) 2012, 2013 Thomas Tsou * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include "convolve.h" #ifdef HAVE_CONFIG_H #include "config.h" #endif /* Forward declarations from base implementation */ int _base_convolve_real(float *x, int x_len, float *h, int h_len, float *y, int y_len, int start, int len, int step, int offset); int _base_convolve_complex(float *x, int x_len, float *h, int h_len, float *y, int y_len, int start, int len, int step, int offset); int bounds_check(int x_len, int h_len, int y_len, int start, int len, int step); #ifdef HAVE_SSE3 #include #include /* 4-tap SSE complex-real convolution */ static void sse_conv_real4(float *restrict x, float *restrict h, float *restrict y, int len) { __m128 m0, m1, m2, m3, m4, m5, m6, m7; /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[0]); m1 = _mm_load_ps(&h[4]); m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); for (int i = 0; i < len; i++) { /* Load (unaligned) input data */ m0 = _mm_loadu_ps(&x[2 * i + 0]); m1 = _mm_loadu_ps(&x[2 * i + 4]); m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m3 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); /* Quad multiply */ m4 = _mm_mul_ps(m2, m7); m5 = _mm_mul_ps(m3, m7); /* Sum and store */ m6 = _mm_hadd_ps(m4, m5); m0 = _mm_hadd_ps(m6, m6); _mm_store_ss(&y[2 * i + 0], m0); m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m0); } } /* 8-tap SSE complex-real convolution */ static void sse_conv_real8(float *restrict x, float *restrict h, float *restrict y, int len) { __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9; /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[0]); m1 = _mm_load_ps(&h[4]); m2 = _mm_load_ps(&h[8]); m3 = _mm_load_ps(&h[12]); m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m5 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); for (int i = 0; i < len; i++) { /* Load (unaligned) input data */ m0 = _mm_loadu_ps(&x[2 * i + 0]); m1 = _mm_loadu_ps(&x[2 * i + 4]); m2 = _mm_loadu_ps(&x[2 * i + 8]); m3 = _mm_loadu_ps(&x[2 * i + 12]); m6 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m8 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m9 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); /* Quad multiply */ m6 = _mm_mul_ps(m6, m4); m7 = _mm_mul_ps(m7, m4); m8 = _mm_mul_ps(m8, m5); m9 = _mm_mul_ps(m9, m5); /* Sum and store */ m6 = _mm_add_ps(m6, m8); m7 = _mm_add_ps(m7, m9); m6 = _mm_hadd_ps(m6, m7); m6 = _mm_hadd_ps(m6, m6); _mm_store_ss(&y[2 * i + 0], m6); m6 = _mm_shuffle_ps(m6, m6, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m6); } } /* 12-tap SSE complex-real convolution */ static void sse_conv_real12(float *restrict x, float *restrict h, float *restrict y, int len) { __m128 m0, m1, m2, m3, m4, m5, m6, m7; __m128 m8, m9, m10, m11, m12, m13, m14; /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[0]); m1 = _mm_load_ps(&h[4]); m2 = _mm_load_ps(&h[8]); m3 = _mm_load_ps(&h[12]); m4 = _mm_load_ps(&h[16]); m5 = _mm_load_ps(&h[20]); m12 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m13 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m14 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2)); for (int i = 0; i < len; i++) { /* Load (unaligned) input data */ m0 = _mm_loadu_ps(&x[2 * i + 0]); m1 = _mm_loadu_ps(&x[2 * i + 4]); m2 = _mm_loadu_ps(&x[2 * i + 8]); m3 = _mm_loadu_ps(&x[2 * i + 12]); m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); m0 = _mm_loadu_ps(&x[2 * i + 16]); m1 = _mm_loadu_ps(&x[2 * i + 20]); m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); /* Quad multiply */ m0 = _mm_mul_ps(m4, m12); m1 = _mm_mul_ps(m5, m12); m2 = _mm_mul_ps(m6, m13); m3 = _mm_mul_ps(m7, m13); m4 = _mm_mul_ps(m8, m14); m5 = _mm_mul_ps(m9, m14); /* Sum and store */ m8 = _mm_add_ps(m0, m2); m9 = _mm_add_ps(m1, m3); m10 = _mm_add_ps(m8, m4); m11 = _mm_add_ps(m9, m5); m2 = _mm_hadd_ps(m10, m11); m3 = _mm_hadd_ps(m2, m2); _mm_store_ss(&y[2 * i + 0], m3); m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m3); } } /* 16-tap SSE complex-real convolution */ static void sse_conv_real16(float *restrict x, float *restrict h, float *restrict y, int len) { __m128 m0, m1, m2, m3, m4, m5, m6, m7; __m128 m8, m9, m10, m11, m12, m13, m14, m15; /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[0]); m1 = _mm_load_ps(&h[4]); m2 = _mm_load_ps(&h[8]); m3 = _mm_load_ps(&h[12]); m4 = _mm_load_ps(&h[16]); m5 = _mm_load_ps(&h[20]); m6 = _mm_load_ps(&h[24]); m7 = _mm_load_ps(&h[28]); m12 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m13 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m14 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2)); m15 = _mm_shuffle_ps(m6, m7, _MM_SHUFFLE(0, 2, 0, 2)); for (int i = 0; i < len; i++) { /* Load (unaligned) input data */ m0 = _mm_loadu_ps(&x[2 * i + 0]); m1 = _mm_loadu_ps(&x[2 * i + 4]); m2 = _mm_loadu_ps(&x[2 * i + 8]); m3 = _mm_loadu_ps(&x[2 * i + 12]); m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); m0 = _mm_loadu_ps(&x[2 * i + 16]); m1 = _mm_loadu_ps(&x[2 * i + 20]); m2 = _mm_loadu_ps(&x[2 * i + 24]); m3 = _mm_loadu_ps(&x[2 * i + 28]); m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m10 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m11 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); /* Quad multiply */ m0 = _mm_mul_ps(m4, m12); m1 = _mm_mul_ps(m5, m12); m2 = _mm_mul_ps(m6, m13); m3 = _mm_mul_ps(m7, m13); m4 = _mm_mul_ps(m8, m14); m5 = _mm_mul_ps(m9, m14); m6 = _mm_mul_ps(m10, m15); m7 = _mm_mul_ps(m11, m15); /* Sum and store */ m8 = _mm_add_ps(m0, m2); m9 = _mm_add_ps(m1, m3); m10 = _mm_add_ps(m4, m6); m11 = _mm_add_ps(m5, m7); m0 = _mm_add_ps(m8, m10); m1 = _mm_add_ps(m9, m11); m2 = _mm_hadd_ps(m0, m1); m3 = _mm_hadd_ps(m2, m2); _mm_store_ss(&y[2 * i + 0], m3); m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m3); } } /* 20-tap SSE complex-real convolution */ static void sse_conv_real20(float *restrict x, float *restrict h, float *restrict y, int len) { __m128 m0, m1, m2, m3, m4, m5, m6, m7; __m128 m8, m9, m11, m12, m13, m14, m15; /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[0]); m1 = _mm_load_ps(&h[4]); m2 = _mm_load_ps(&h[8]); m3 = _mm_load_ps(&h[12]); m4 = _mm_load_ps(&h[16]); m5 = _mm_load_ps(&h[20]); m6 = _mm_load_ps(&h[24]); m7 = _mm_load_ps(&h[28]); m8 = _mm_load_ps(&h[32]); m9 = _mm_load_ps(&h[36]); m11 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m12 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m13 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2)); m14 = _mm_shuffle_ps(m6, m7, _MM_SHUFFLE(0, 2, 0, 2)); m15 = _mm_shuffle_ps(m8, m9, _MM_SHUFFLE(0, 2, 0, 2)); for (int i = 0; i < len; i++) { /* Multiply-accumulate first 12 taps */ m0 = _mm_loadu_ps(&x[2 * i + 0]); m1 = _mm_loadu_ps(&x[2 * i + 4]); m2 = _mm_loadu_ps(&x[2 * i + 8]); m3 = _mm_loadu_ps(&x[2 * i + 12]); m4 = _mm_loadu_ps(&x[2 * i + 16]); m5 = _mm_loadu_ps(&x[2 * i + 20]); m6 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m7 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m8 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m9 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); m0 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(0, 2, 0, 2)); m1 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(1, 3, 1, 3)); m2 = _mm_mul_ps(m6, m11); m3 = _mm_mul_ps(m7, m11); m4 = _mm_mul_ps(m8, m12); m5 = _mm_mul_ps(m9, m12); m6 = _mm_mul_ps(m0, m13); m7 = _mm_mul_ps(m1, m13); m0 = _mm_add_ps(m2, m4); m1 = _mm_add_ps(m3, m5); m8 = _mm_add_ps(m0, m6); m9 = _mm_add_ps(m1, m7); /* Multiply-accumulate last 8 taps */ m0 = _mm_loadu_ps(&x[2 * i + 24]); m1 = _mm_loadu_ps(&x[2 * i + 28]); m2 = _mm_loadu_ps(&x[2 * i + 32]); m3 = _mm_loadu_ps(&x[2 * i + 36]); m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m6 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); m0 = _mm_mul_ps(m4, m14); m1 = _mm_mul_ps(m5, m14); m2 = _mm_mul_ps(m6, m15); m3 = _mm_mul_ps(m7, m15); m4 = _mm_add_ps(m0, m2); m5 = _mm_add_ps(m1, m3); /* Final sum and store */ m0 = _mm_add_ps(m8, m4); m1 = _mm_add_ps(m9, m5); m2 = _mm_hadd_ps(m0, m1); m3 = _mm_hadd_ps(m2, m2); _mm_store_ss(&y[2 * i + 0], m3); m3 = _mm_shuffle_ps(m3, m3, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m3); } } /* 4*N-tap SSE complex-real convolution */ static void sse_conv_real4n(float *x, float *h, float *y, int h_len, int len) { __m128 m0, m1, m2, m4, m5, m6, m7; for (int i = 0; i < len; i++) { /* Zero */ m6 = _mm_setzero_ps(); m7 = _mm_setzero_ps(); for (int n = 0; n < h_len / 4; n++) { /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[8 * n + 0]); m1 = _mm_load_ps(&h[8 * n + 4]); m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); /* Load (unaligned) input data */ m0 = _mm_loadu_ps(&x[2 * i + 8 * n + 0]); m1 = _mm_loadu_ps(&x[2 * i + 8 * n + 4]); m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); /* Quad multiply */ m0 = _mm_mul_ps(m2, m4); m1 = _mm_mul_ps(m2, m5); /* Accumulate */ m6 = _mm_add_ps(m6, m0); m7 = _mm_add_ps(m7, m1); } m0 = _mm_hadd_ps(m6, m7); m0 = _mm_hadd_ps(m0, m0); _mm_store_ss(&y[2 * i + 0], m0); m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m0); } } /* 4*N-tap SSE complex-complex convolution */ static void sse_conv_cmplx_4n(float *x, float *h, float *y, int h_len, int len) { __m128 m0, m1, m2, m3, m4, m5, m6, m7; for (int i = 0; i < len; i++) { /* Zero */ m6 = _mm_setzero_ps(); m7 = _mm_setzero_ps(); for (int n = 0; n < h_len / 4; n++) { /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[8 * n + 0]); m1 = _mm_load_ps(&h[8 * n + 4]); m2 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m3 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); /* Load (unaligned) input data */ m0 = _mm_loadu_ps(&x[2 * i + 8 * n + 0]); m1 = _mm_loadu_ps(&x[2 * i + 8 * n + 4]); m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); /* Quad multiply */ m0 = _mm_mul_ps(m2, m4); m1 = _mm_mul_ps(m3, m5); m2 = _mm_mul_ps(m2, m5); m3 = _mm_mul_ps(m3, m4); /* Sum */ m0 = _mm_sub_ps(m0, m1); m2 = _mm_add_ps(m2, m3); /* Accumulate */ m6 = _mm_add_ps(m6, m0); m7 = _mm_add_ps(m7, m2); } m0 = _mm_hadd_ps(m6, m7); m0 = _mm_hadd_ps(m0, m0); _mm_store_ss(&y[2 * i + 0], m0); m0 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m0); } } /* 8*N-tap SSE complex-complex convolution */ static void sse_conv_cmplx_8n(float *x, float *h, float *y, int h_len, int len) { __m128 m0, m1, m2, m3, m4, m5, m6, m7; __m128 m8, m9, m10, m11, m12, m13, m14, m15; for (int i = 0; i < len; i++) { /* Zero */ m12 = _mm_setzero_ps(); m13 = _mm_setzero_ps(); m14 = _mm_setzero_ps(); m15 = _mm_setzero_ps(); for (int n = 0; n < h_len / 8; n++) { /* Load (aligned) filter taps */ m0 = _mm_load_ps(&h[16 * n + 0]); m1 = _mm_load_ps(&h[16 * n + 4]); m2 = _mm_load_ps(&h[16 * n + 8]); m3 = _mm_load_ps(&h[16 * n + 12]); m4 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m5 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m6 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 2, 0, 2)); m7 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); /* Load (unaligned) input data */ m0 = _mm_loadu_ps(&x[2 * i + 16 * n + 0]); m1 = _mm_loadu_ps(&x[2 * i + 16 * n + 4]); m2 = _mm_loadu_ps(&x[2 * i + 16 * n + 8]); m3 = _mm_loadu_ps(&x[2 * i + 16 * n + 12]); m8 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(0, 2, 0, 2)); m9 = _mm_shuffle_ps(m0, m1, _MM_SHUFFLE(1, 3, 1, 3)); m10 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(0, 2, 0, 2)); m11 = _mm_shuffle_ps(m2, m3, _MM_SHUFFLE(1, 3, 1, 3)); /* Quad multiply */ m0 = _mm_mul_ps(m4, m8); m1 = _mm_mul_ps(m5, m9); m2 = _mm_mul_ps(m6, m10); m3 = _mm_mul_ps(m7, m11); m4 = _mm_mul_ps(m4, m9); m5 = _mm_mul_ps(m5, m8); m6 = _mm_mul_ps(m6, m11); m7 = _mm_mul_ps(m7, m10); /* Sum */ m0 = _mm_sub_ps(m0, m1); m2 = _mm_sub_ps(m2, m3); m4 = _mm_add_ps(m4, m5); m6 = _mm_add_ps(m6, m7); /* Accumulate */ m12 = _mm_add_ps(m12, m0); m13 = _mm_add_ps(m13, m2); m14 = _mm_add_ps(m14, m4); m15 = _mm_add_ps(m15, m6); } m0 = _mm_add_ps(m12, m13); m1 = _mm_add_ps(m14, m15); m2 = _mm_hadd_ps(m0, m1); m2 = _mm_hadd_ps(m2, m2); _mm_store_ss(&y[2 * i + 0], m2); m2 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(0, 3, 2, 1)); _mm_store_ss(&y[2 * i + 1], m2); } } #endif /* API: Aligned complex-real */ int convolve_real(float *x, int x_len, float *h, int h_len, float *y, int y_len, int start, int len, int step, int offset) { void (*conv_func)(float *, float *, float *, int) = NULL; void (*conv_func_n)(float *, float *, float *, int, int) = NULL; if (bounds_check(x_len, h_len, y_len, start, len, step) < 0) return -1; memset(y, 0, len * 2 * sizeof(float)); #ifdef HAVE_SSE3 if (step <= 4) { switch (h_len) { case 4: conv_func = sse_conv_real4; break; case 8: conv_func = sse_conv_real8; break; case 12: conv_func = sse_conv_real12; break; case 16: conv_func = sse_conv_real16; break; case 20: conv_func = sse_conv_real20; break; default: if (!(h_len % 4)) conv_func_n = sse_conv_real4n; } } #endif if (conv_func) { conv_func(&x[2 * (-(h_len - 1) + start)], h, y, len); } else if (conv_func_n) { conv_func_n(&x[2 * (-(h_len - 1) + start)], h, y, h_len, len); } else { _base_convolve_real(x, x_len, h, h_len, y, y_len, start, len, step, offset); } return len; } /* API: Aligned complex-complex */ int convolve_complex(float *x, int x_len, float *h, int h_len, float *y, int y_len, int start, int len, int step, int offset) { void (*conv_func)(float *, float *, float *, int, int) = NULL; if (bounds_check(x_len, h_len, y_len, start, len, step) < 0) return -1; memset(y, 0, len * 2 * sizeof(float)); #ifdef HAVE_SSE3 if (step <= 4) { if (!(h_len % 8)) conv_func = sse_conv_cmplx_8n; else if (!(h_len % 4)) conv_func = sse_conv_cmplx_4n; } #endif if (conv_func) { conv_func(&x[2 * (-(h_len - 1) + start)], h, y, h_len, len); } else { _base_convolve_complex(x, x_len, h, h_len, y, y_len, start, len, step, offset); } return len; }