/* A Media Gateway Control Protocol Media Gateway: RFC 3435 */ /* The protocol implementation */ /* * (C) 2009-2012 by Holger Hans Peter Freyther * (C) 2009-2012 by On-Waves * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include #include #warning "Make use of the rtp proxy code" /* attempt to determine byte order */ #include #include #include #ifndef __BYTE_ORDER # ifdef __APPLE__ # define __BYTE_ORDER __DARWIN_BYTE_ORDER # define __LITTLE_ENDIAN __DARWIN_LITTLE_ENDIAN # define __BIG_ENDIAN __DARWIN_BIG_ENDIAN # else # error "__BYTE_ORDER should be defined by someone" # endif #endif /* according to rtp_proxy.c RFC 3550 */ struct rtp_hdr { #if __BYTE_ORDER == __LITTLE_ENDIAN uint8_t csrc_count:4, extension:1, padding:1, version:2; uint8_t payload_type:7, marker:1; #elif __BYTE_ORDER == __BIG_ENDIAN uint8_t version:2, padding:1, extension:1, csrc_count:4; uint8_t marker:1, payload_type:7; #endif uint16_t sequence; uint32_t timestamp; uint32_t ssrc; } __attribute__((packed)); #define RTP_SEQ_MOD (1 << 16) #define RTP_MAX_DROPOUT 3000 #define RTP_MAX_MISORDER 100 enum { DEST_NETWORK = 0, DEST_BTS = 1, }; enum { PROTO_RTP, PROTO_RTCP, }; #define DUMMY_LOAD 0x23 /** * This does not need to be a precision timestamp and * is allowed to wrap quite fast. The returned value is * milli seconds now. */ uint32_t get_current_ts(void) { struct timespec tp; uint64_t ret; memset(&tp, 0, sizeof(tp)); if (clock_gettime(CLOCK_MONOTONIC, &tp) != 0) LOGP(DMGCP, LOGL_NOTICE, "Getting the clock failed.\n"); /* convert it to useconds */ ret = tp.tv_sec; ret *= 1000; ret += tp.tv_nsec / 1000 / 1000; return ret; } static int udp_send(int fd, struct in_addr *addr, int port, char *buf, int len) { struct sockaddr_in out; out.sin_family = AF_INET; out.sin_port = port; memcpy(&out.sin_addr, addr, sizeof(*addr)); return sendto(fd, buf, len, 0, (struct sockaddr *)&out, sizeof(out)); } int mgcp_send_dummy(struct mgcp_endpoint *endp) { static char buf[] = { DUMMY_LOAD }; return udp_send(endp->net_end.rtp.fd, &endp->net_end.addr, endp->net_end.rtp_port, buf, 1); } /** * The RFC 3550 Appendix A assumes there are multiple sources but * some of the supported endpoints (e.g. the nanoBTS) can only handle * one source and this code will patch packages to appear as if there * is only one source. * There is also no probation period for new sources. Every package * we receive will be seen as a switch in streams. */ static void patch_and_count(struct mgcp_endpoint *endp, struct mgcp_rtp_state *state, int payload, struct sockaddr_in *addr, char *data, int len) { uint32_t arrival_time; int32_t transit, d; uint16_t seq, udelta; uint32_t timestamp; struct rtp_hdr *rtp_hdr; if (len < sizeof(*rtp_hdr)) return; rtp_hdr = (struct rtp_hdr *) data; seq = ntohs(rtp_hdr->sequence); timestamp = ntohl(rtp_hdr->timestamp); arrival_time = get_current_ts(); if (!state->initialized) { state->base_seq = seq; state->max_seq = seq - 1; state->ssrc = state->orig_ssrc = rtp_hdr->ssrc; state->initialized = 1; state->last_timestamp = timestamp; state->jitter = 0; state->transit = arrival_time - timestamp; } else if (state->ssrc != rtp_hdr->ssrc) { state->ssrc = rtp_hdr->ssrc; state->seq_offset = (state->max_seq + 1) - seq; state->timestamp_offset = state->last_timestamp - timestamp; state->patch = endp->allow_patch; LOGP(DMGCP, LOGL_NOTICE, "The SSRC changed on 0x%x SSRC: %u offset: %d from %s:%d in %d\n", ENDPOINT_NUMBER(endp), state->ssrc, state->seq_offset, inet_ntoa(addr->sin_addr), ntohs(addr->sin_port), endp->conn_mode); } /* apply the offset and store it back to the packet */ if (state->patch) { seq += state->seq_offset; rtp_hdr->sequence = htons(seq); rtp_hdr->ssrc = state->orig_ssrc; timestamp += state->timestamp_offset; rtp_hdr->timestamp = htonl(timestamp); } /* * The below takes the shape of the validation from Appendix A. Check * if there is something weird with the sequence number, otherwise check * for a wrap around in the sequence number. */ udelta = seq - state->max_seq; if (udelta < RTP_MAX_DROPOUT) { if (seq < state->max_seq) state->cycles += RTP_SEQ_MOD; } else if (udelta <= RTP_SEQ_MOD - RTP_MAX_MISORDER) { LOGP(DMGCP, LOGL_NOTICE, "RTP seqno made a very large jump on 0x%x delta: %u\n", ENDPOINT_NUMBER(endp), udelta); } /* * calculate the jitter between the two packages. The TS should be * taken closer to the read function. This was taken from the * Appendix A of RFC 3550. The local timestamp has a usec resolution. */ transit = arrival_time - timestamp; d = transit - state->transit; state->transit = transit; if (d < 0) d = -d; state->jitter += d - ((state->jitter + 8) >> 4); state->max_seq = seq; state->last_timestamp = timestamp; if (payload < 0) return; rtp_hdr->payload_type = payload; } /* * The below code is for dispatching. We have a dedicated port for * the data coming from the net and one to discover the BTS. */ static int forward_data(int fd, struct mgcp_rtp_tap *tap, const char *buf, int len) { if (!tap->enabled) return 0; return sendto(fd, buf, len, 0, (struct sockaddr *)&tap->forward, sizeof(tap->forward)); } static int send_transcoder(struct mgcp_rtp_end *end, struct mgcp_config *cfg, int is_rtp, const char *buf, int len) { int rc; int port; struct sockaddr_in addr; port = is_rtp ? end->rtp_port : end->rtcp_port; addr.sin_family = AF_INET; addr.sin_addr = cfg->transcoder_in; addr.sin_port = port; rc = sendto(is_rtp ? end->rtp.fd : end->rtcp.fd, buf, len, 0, (struct sockaddr *) &addr, sizeof(addr)); if (rc != len) LOGP(DMGCP, LOGL_ERROR, "Failed to send data to the transcoder: %s\n", strerror(errno)); return rc; } static int send_to(struct mgcp_endpoint *endp, int dest, int is_rtp, struct sockaddr_in *addr, char *buf, int rc) { struct mgcp_trunk_config *tcfg = endp->tcfg; /* For loop toggle the destination and then dispatch. */ if (tcfg->audio_loop) dest = !dest; /* Loop based on the conn_mode, maybe undoing the above */ if (endp->conn_mode == MGCP_CONN_LOOPBACK) dest = !dest; if (dest == DEST_NETWORK) { if (is_rtp) { patch_and_count(endp, &endp->bts_state, endp->net_end.payload_type, addr, buf, rc); forward_data(endp->net_end.rtp.fd, &endp->taps[MGCP_TAP_NET_OUT], buf, rc); return udp_send(endp->net_end.rtp.fd, &endp->net_end.addr, endp->net_end.rtp_port, buf, rc); } else if (!tcfg->omit_rtcp) { return udp_send(endp->net_end.rtcp.fd, &endp->net_end.addr, endp->net_end.rtcp_port, buf, rc); } } else { if (is_rtp) { patch_and_count(endp, &endp->net_state, endp->bts_end.payload_type, addr, buf, rc); forward_data(endp->bts_end.rtp.fd, &endp->taps[MGCP_TAP_BTS_OUT], buf, rc); return udp_send(endp->bts_end.rtp.fd, &endp->bts_end.addr, endp->bts_end.rtp_port, buf, rc); } else if (!tcfg->omit_rtcp) { return udp_send(endp->bts_end.rtcp.fd, &endp->bts_end.addr, endp->bts_end.rtcp_port, buf, rc); } } return 0; } static int receive_from(struct mgcp_endpoint *endp, int fd, struct sockaddr_in *addr, char *buf, int bufsize) { int rc; socklen_t slen = sizeof(*addr); rc = recvfrom(fd, buf, bufsize, 0, (struct sockaddr *) addr, &slen); if (rc < 0) { LOGP(DMGCP, LOGL_ERROR, "Failed to receive message on: 0x%x errno: %d/%s\n", ENDPOINT_NUMBER(endp), errno, strerror(errno)); return -1; } /* do not forward aynthing... maybe there is a packet from the bts */ if (!endp->allocated) return -1; #warning "Slight spec violation. With connection mode recvonly we should attempt to forward." return rc; } static int rtp_data_net(struct osmo_fd *fd, unsigned int what) { char buf[4096]; struct sockaddr_in addr; struct mgcp_endpoint *endp; int rc, proto; endp = (struct mgcp_endpoint *) fd->data; rc = receive_from(endp, fd->fd, &addr, buf, sizeof(buf)); if (rc <= 0) return -1; if (memcmp(&addr.sin_addr, &endp->net_end.addr, sizeof(addr.sin_addr)) != 0) { LOGP(DMGCP, LOGL_ERROR, "Endpoint 0x%x data from wrong address %s vs. ", ENDPOINT_NUMBER(endp), inet_ntoa(addr.sin_addr)); LOGPC(DMGCP, LOGL_ERROR, "%s\n", inet_ntoa(endp->net_end.addr)); return -1; } if (endp->net_end.rtp_port != addr.sin_port && endp->net_end.rtcp_port != addr.sin_port) { LOGP(DMGCP, LOGL_ERROR, "Data from wrong source port %d on 0x%x\n", ntohs(addr.sin_port), ENDPOINT_NUMBER(endp)); return -1; } /* throw away the dummy message */ if (rc == 1 && buf[0] == DUMMY_LOAD) { LOGP(DMGCP, LOGL_NOTICE, "Filtered dummy from network on 0x%x\n", ENDPOINT_NUMBER(endp)); return 0; } proto = fd == &endp->net_end.rtp ? PROTO_RTP : PROTO_RTCP; endp->net_end.packets += 1; endp->net_end.octets += rc; forward_data(fd->fd, &endp->taps[MGCP_TAP_NET_IN], buf, rc); if (endp->is_transcoded) return send_transcoder(&endp->trans_net, endp->cfg, proto == PROTO_RTP, &buf[0], rc); else return send_to(endp, DEST_BTS, proto == PROTO_RTP, &addr, &buf[0], rc); } static void discover_bts(struct mgcp_endpoint *endp, int proto, struct sockaddr_in *addr) { struct mgcp_config *cfg = endp->cfg; if (proto == PROTO_RTP && endp->bts_end.rtp_port == 0) { if (!cfg->bts_ip || memcmp(&addr->sin_addr, &cfg->bts_in, sizeof(cfg->bts_in)) == 0 || memcmp(&addr->sin_addr, &endp->bts_end.addr, sizeof(endp->bts_end.addr)) == 0) { endp->bts_end.rtp_port = addr->sin_port; endp->bts_end.addr = addr->sin_addr; LOGP(DMGCP, LOGL_NOTICE, "Found BTS for endpoint: 0x%x on port: %d/%d of %s\n", ENDPOINT_NUMBER(endp), ntohs(endp->bts_end.rtp_port), ntohs(endp->bts_end.rtcp_port), inet_ntoa(addr->sin_addr)); } } else if (proto == PROTO_RTCP && endp->bts_end.rtcp_port == 0) { if (memcmp(&endp->bts_end.addr, &addr->sin_addr, sizeof(endp->bts_end.addr)) == 0) { endp->bts_end.rtcp_port = addr->sin_port; } } } static int rtp_data_bts(struct osmo_fd *fd, unsigned int what) { char buf[4096]; struct sockaddr_in addr; struct mgcp_endpoint *endp; int rc, proto; endp = (struct mgcp_endpoint *) fd->data; rc = receive_from(endp, fd->fd, &addr, buf, sizeof(buf)); if (rc <= 0) return -1; proto = fd == &endp->bts_end.rtp ? PROTO_RTP : PROTO_RTCP; /* We have no idea who called us, maybe it is the BTS. */ /* it was the BTS... */ discover_bts(endp, proto, &addr); if (memcmp(&endp->bts_end.addr, &addr.sin_addr, sizeof(addr.sin_addr)) != 0) { LOGP(DMGCP, LOGL_ERROR, "Data from wrong bts %s on 0x%x\n", inet_ntoa(addr.sin_addr), ENDPOINT_NUMBER(endp)); return -1; } if (endp->bts_end.rtp_port != addr.sin_port && endp->bts_end.rtcp_port != addr.sin_port) { LOGP(DMGCP, LOGL_ERROR, "Data from wrong bts source port %d on 0x%x\n", ntohs(addr.sin_port), ENDPOINT_NUMBER(endp)); return -1; } /* throw away the dummy message */ if (rc == 1 && buf[0] == DUMMY_LOAD) { LOGP(DMGCP, LOGL_NOTICE, "Filtered dummy from bts on 0x%x\n", ENDPOINT_NUMBER(endp)); return 0; } /* do this before the loop handling */ endp->bts_end.packets += 1; endp->bts_end.octets += rc; forward_data(fd->fd, &endp->taps[MGCP_TAP_BTS_IN], buf, rc); if (endp->is_transcoded) return send_transcoder(&endp->trans_bts, endp->cfg, proto == PROTO_RTP, &buf[0], rc); else return send_to(endp, DEST_NETWORK, proto == PROTO_RTP, &addr, &buf[0], rc); } static int rtp_data_transcoder(struct mgcp_rtp_end *end, struct mgcp_endpoint *_endp, int dest, struct osmo_fd *fd) { char buf[4096]; struct sockaddr_in addr; struct mgcp_config *cfg; int rc, proto; cfg = _endp->cfg; rc = receive_from(_endp, fd->fd, &addr, buf, sizeof(buf)); if (rc <= 0) return -1; proto = fd == &end->rtp ? PROTO_RTP : PROTO_RTCP; if (memcmp(&addr.sin_addr, &cfg->transcoder_in, sizeof(addr.sin_addr)) != 0) { LOGP(DMGCP, LOGL_ERROR, "Data not coming from transcoder dest: %d %s on 0x%x\n", dest, inet_ntoa(addr.sin_addr), ENDPOINT_NUMBER(_endp)); return -1; } if (end->rtp_port != addr.sin_port && end->rtcp_port != addr.sin_port) { LOGP(DMGCP, LOGL_ERROR, "Data from wrong transcoder dest %d source port %d on 0x%x\n", dest, ntohs(addr.sin_port), ENDPOINT_NUMBER(_endp)); return -1; } /* throw away the dummy message */ if (rc == 1 && buf[0] == DUMMY_LOAD) { LOGP(DMGCP, LOGL_NOTICE, "Filtered dummy from transcoder dest %d on 0x%x\n", dest, ENDPOINT_NUMBER(_endp)); return 0; } end->packets += 1; return send_to(_endp, dest, proto == PROTO_RTP, &addr, &buf[0], rc); } static int rtp_data_trans_net(struct osmo_fd *fd, unsigned int what) { struct mgcp_endpoint *endp; endp = (struct mgcp_endpoint *) fd->data; return rtp_data_transcoder(&endp->trans_net, endp, DEST_NETWORK, fd); } static int rtp_data_trans_bts(struct osmo_fd *fd, unsigned int what) { struct mgcp_endpoint *endp; endp = (struct mgcp_endpoint *) fd->data; return rtp_data_transcoder(&endp->trans_bts, endp, DEST_BTS, fd); } static int create_bind(const char *source_addr, struct osmo_fd *fd, int port) { struct sockaddr_in addr; int on = 1; fd->fd = socket(AF_INET, SOCK_DGRAM, 0); if (fd->fd < 0) { LOGP(DMGCP, LOGL_ERROR, "Failed to create UDP port.\n"); return -1; } setsockopt(fd->fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)); memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_port = htons(port); inet_aton(source_addr, &addr.sin_addr); if (bind(fd->fd, (struct sockaddr *) &addr, sizeof(addr)) < 0) { close(fd->fd); fd->fd = -1; return -1; } return 0; } static int set_ip_tos(int fd, int tos) { int ret; ret = setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)); return ret != 0; } static int bind_rtp(struct mgcp_config *cfg, struct mgcp_rtp_end *rtp_end, int endpno) { if (create_bind(cfg->source_addr, &rtp_end->rtp, rtp_end->local_port) != 0) { LOGP(DMGCP, LOGL_ERROR, "Failed to create RTP port: %s:%d on 0x%x\n", cfg->source_addr, rtp_end->local_port, endpno); goto cleanup0; } if (create_bind(cfg->source_addr, &rtp_end->rtcp, rtp_end->local_port + 1) != 0) { LOGP(DMGCP, LOGL_ERROR, "Failed to create RTCP port: %s:%d on 0x%x\n", cfg->source_addr, rtp_end->local_port + 1, endpno); goto cleanup1; } set_ip_tos(rtp_end->rtp.fd, cfg->endp_dscp); set_ip_tos(rtp_end->rtcp.fd, cfg->endp_dscp); rtp_end->rtp.when = BSC_FD_READ; if (osmo_fd_register(&rtp_end->rtp) != 0) { LOGP(DMGCP, LOGL_ERROR, "Failed to register RTP port %d on 0x%x\n", rtp_end->local_port, endpno); goto cleanup2; } rtp_end->rtcp.when = BSC_FD_READ; if (osmo_fd_register(&rtp_end->rtcp) != 0) { LOGP(DMGCP, LOGL_ERROR, "Failed to register RTCP port %d on 0x%x\n", rtp_end->local_port + 1, endpno); goto cleanup3; } return 0; cleanup3: osmo_fd_unregister(&rtp_end->rtp); cleanup2: close(rtp_end->rtcp.fd); rtp_end->rtcp.fd = -1; cleanup1: close(rtp_end->rtp.fd); rtp_end->rtp.fd = -1; cleanup0: return -1; } static int int_bind(const char *port, struct mgcp_rtp_end *end, int (*cb)(struct osmo_fd *, unsigned), struct mgcp_endpoint *_endp, int rtp_port) { if (end->rtp.fd != -1 || end->rtcp.fd != -1) { LOGP(DMGCP, LOGL_ERROR, "Previous %s was still bound on %d\n", port, ENDPOINT_NUMBER(_endp)); mgcp_free_rtp_port(end); } end->local_port = rtp_port; end->rtp.cb = cb; end->rtp.data = _endp; end->rtcp.data = _endp; end->rtcp.cb = cb; return bind_rtp(_endp->cfg, end, ENDPOINT_NUMBER(_endp)); } int mgcp_bind_bts_rtp_port(struct mgcp_endpoint *endp, int rtp_port) { return int_bind("bts-port", &endp->bts_end, rtp_data_bts, endp, rtp_port); } int mgcp_bind_net_rtp_port(struct mgcp_endpoint *endp, int rtp_port) { return int_bind("net-port", &endp->net_end, rtp_data_net, endp, rtp_port); } int mgcp_bind_trans_net_rtp_port(struct mgcp_endpoint *endp, int rtp_port) { return int_bind("trans-net", &endp->trans_net, rtp_data_trans_net, endp, rtp_port); } int mgcp_bind_trans_bts_rtp_port(struct mgcp_endpoint *endp, int rtp_port) { return int_bind("trans-bts", &endp->trans_bts, rtp_data_trans_bts, endp, rtp_port); } int mgcp_free_rtp_port(struct mgcp_rtp_end *end) { if (end->rtp.fd != -1) { close(end->rtp.fd); end->rtp.fd = -1; osmo_fd_unregister(&end->rtp); } if (end->rtcp.fd != -1) { close(end->rtcp.fd); end->rtcp.fd = -1; osmo_fd_unregister(&end->rtcp); } return 0; } void mgcp_state_calc_loss(struct mgcp_rtp_state *state, struct mgcp_rtp_end *end, uint32_t *expected, int *loss) { *expected = state->cycles + state->max_seq; *expected = *expected - state->base_seq + 1; if (!state->initialized) { *expected = 0; *loss = 0; return; } /* * Make sure the sign is correct and use the biggest * positive/negative number that fits. */ *loss = *expected - end->packets; if (*expected < end->packets) { if (*loss > 0) *loss = INT_MIN; } else { if (*loss < 0) *loss = INT_MAX; } } uint32_t mgcp_state_calc_jitter(struct mgcp_rtp_state *state) { if (!state->initialized) return 0; return state->jitter >> 4; }