aboutsummaryrefslogtreecommitdiffstats
path: root/GPRSSocket.cpp
blob: 6bcf55d7bb5a7d222e9c4e34e85b837031f8df42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*GPRSSocket.cpp
 *
 * Copyright (C) 2011 Ivan Klyuchnikov
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */
 
#include <Sockets.h>
#include <Threads.h>
#include <BitVector.h>
#include <gsmtap.h>
#include "GPRSSocket.h"
#include "bssgp.h"

#define MAX_UDP_LENGTH 1500

#define RLCMAC_DATA_BLOCK 0
#define RLCMAC_CONTROL_BLOCK 1

// TODO: We should take ports and IP from config.
UDPSocket GPRSRLCMACSocket(5070, "127.0.0.1", 5934);
UDPSocket GSMTAPSocket(5077, "127.0.0.1", 4729);

void sendToGSMTAP(uint8_t * data, unsigned len)
{
	char buffer[MAX_UDP_LENGTH];
	int ofs = 0;

	// Build header
	struct gsmtap_hdr *header = (struct gsmtap_hdr *)buffer;
	header->version			= 2;
	header->hdr_len			= sizeof(struct gsmtap_hdr) >> 2;
	header->type			= 0x08;
	header->timeslot		= 5;
	header->arfcn			= 0;
	header->signal_dbm		= 0;
	header->snr_db			= 0;
	header->frame_number	= 0;
	header->sub_type		= 0;
	header->antenna_nr		= 0;
	header->sub_slot		= 0;
	header->res				= 0;

	ofs += sizeof(*header);

	// Add frame data
	unsigned j = 0;
	for (unsigned i = ofs; i < len+ofs; i++)
	{
		buffer[i] = (char)data[j];
		j++;
	}
	ofs += len;
	// Write the GSMTAP packet
	GSMTAPSocket.write(buffer, ofs);
}


void sendToOpenBTS(BitVector * vector)
{
	char buffer[MAX_UDP_LENGTH];
	int ofs = 0;
	vector->pack((unsigned char*)&buffer[ofs]);
	ofs += vector->size() >> 3;
	COUT("Send to OpenBTS: " << *vector);
	GPRSRLCMACSocket.write(buffer, ofs);
}

void  writePDassignment(BitVector * dest, uint8_t TFI, uint32_t TLLI)
{
	// TODO We should use our implementation of encode RLC/MAC Control messages.
	unsigned wp = 0;
	dest->writeField(wp,0x1,2);  // Payload Type
	dest->writeField(wp,0x0,2);  // Uplink block with TDMA framenumber
	dest->writeField(wp,0x1,1);  // Suppl/Polling Bit
	dest->writeField(wp,0x1,3);  // Uplink state flag
	dest->writeField(wp,0x2,6);  // MESSAGE TYPE
	dest->writeField(wp,0x0,2);  // Page Mode

	dest->writeField(wp,0x0,1); // switch PERSIST_LEVEL: off
	dest->writeField(wp,0x2,2); // switch TLLI   : on
	dest->writeField(wp,TLLI,32); // TLLI

	dest->writeField(wp,0x0,1); // Message escape
	dest->writeField(wp,0x0,2); // Medium Access Method: Dynamic Allocation
	dest->writeField(wp,0x0,1); // RLC acknowledged mode

	dest->writeField(wp,0x0,1); // the network establishes no new downlink TBF for the mobile station
	dest->writeField(wp,0x1,8); // timeslot 7
	dest->writeField(wp,0x1,8); // TIMING_ADVANCE_INDEX

	dest->writeField(wp,0x0,1); // switch TIMING_ADVANCE_VALUE = off
	dest->writeField(wp,0x1,1); // switch TIMING_ADVANCE_INDEX = on
	dest->writeField(wp,0xC,4); // TIMING_ADVANCE_INDEX
	dest->writeField(wp,0x7,3); // TIMING_ADVANCE_TIMESLOT_NUMBER

	dest->writeField(wp,0x0,1); // switch POWER CONTROL = off
	dest->writeField(wp,0x1,1); // Frequency Parameters information elements = present

	dest->writeField(wp,0x2,3); // Training Sequence Code (TSC) = 2
	dest->writeField(wp,0x1,2); // Indirect encoding struct = present
	dest->writeField(wp,0x0,6); // MAIO
	dest->writeField(wp,0xE,4); // MA_Number
	dest->writeField(wp,0x8,4); // CHANGE_MARK_1 CHANGE_MARK_2

	dest->writeField(wp,0x1,1); // switch TFI   : on
	dest->writeField(wp,0x14,5);// TFI

	dest->writeField(wp,0x1,1); // Power Control Parameters IE = present
	dest->writeField(wp,0x0,4); // ALPHA power control parameter
	dest->writeField(wp,0x0,1); // switch GAMMA_TN0 = off
	dest->writeField(wp,0x0,1); // switch GAMMA_TN1 = off
	dest->writeField(wp,0x0,1); // switch GAMMA_TN2 = off
	dest->writeField(wp,0x0,1); // switch GAMMA_TN3 = off
	dest->writeField(wp,0x0,1); // switch GAMMA_TN4 = off
	dest->writeField(wp,0x0,1); // switch GAMMA_TN5 = off
	dest->writeField(wp,0x0,1); // switch GAMMA_TN6 = off
	dest->writeField(wp,0x1,1); // switch GAMMA_TN7 = on
	dest->writeField(wp,0x0,5); // GAMMA_TN7

	dest->writeField(wp,0x0,1); // TBF Starting TIME IE not present
	dest->writeField(wp,0x0,1); // Measurement Mapping struct not present
}

void  writePUassignment(BitVector * dest, uint8_t TFI, uint32_t TLLI)
{
	// TODO We should use our implementation of encode RLC/MAC Control messages.
	unsigned wp = 0;
	dest->writeField(wp,0x1,2);  // Payload Type
	dest->writeField(wp,0x0,2);  // Uplink block with TDMA framenumber
	dest->writeField(wp,0x1,1);  // Suppl/Polling Bit
	dest->writeField(wp,0x1,3);  // Uplink state flag


	dest->writeField(wp,0xa,6);  // MESSAGE TYPE

	dest->writeField(wp,0x0,2);  // Page Mode

	dest->writeField(wp,0x0,1); // switch PERSIST_LEVEL: off
	dest->writeField(wp,0x2,2); // switch TLLI   : on
	dest->writeField(wp,TLLI,32); // TLLI

	dest->writeField(wp,0x0,1); // Message escape
	dest->writeField(wp,0x0,2); // CHANNEL_CODING_COMMAND
	dest->writeField(wp,0x0,1); // TLLI_BLOCK_CHANNEL_CODING 

	dest->writeField(wp,0x1,1); // switch TIMING_ADVANCE_VALUE = on
	dest->writeField(wp,0x0,6); // TIMING_ADVANCE_VALUE
	dest->writeField(wp,0x0,1); // switch TIMING_ADVANCE_INDEX = off
	
	dest->writeField(wp,0x0,1); // Frequency Parameters = off

	dest->writeField(wp,0x1,2); // Dynamic Allocation = off
	
	dest->writeField(wp,0x0,1); // Dynamic Allocation
	dest->writeField(wp,0x0,1); // P0 = off
	
	dest->writeField(wp,0x1,1); // USF_GRANULARITY
	dest->writeField(wp,0x1,1); // switch TFI   : on
	dest->writeField(wp,TFI,5);// TFI

	dest->writeField(wp,0x0,1); //
	dest->writeField(wp,0x0,1); // TBF Starting Time = off
	dest->writeField(wp,0x0,1); // Timeslot Allocation
	
	dest->writeField(wp,0x0,5); // USF_TN 0 - 4
	dest->writeField(wp,0x1,1); // USF_TN 5
	dest->writeField(wp,0x1,3); // USF_TN 5
	dest->writeField(wp,0x0,2); // USF_TN 6 - 7
//	dest->writeField(wp,0x0,1); // Measurement Mapping struct not present
}

void writeIARestOctetsDownlinkAssignment(BitVector * dest, uint8_t TFI, uint32_t TLLI)
{
	// GMS 04.08 10.5.2.37b 10.5.2.16
	unsigned wp = 0;
	dest->writeField(wp, 3, 2);    // "HH"
	dest->writeField(wp, 1, 2);    // "01" Packet Downlink Assignment
	dest->writeField(wp,TLLI,32); // TLLI
	dest->writeField(wp,0x1,1);   // switch TFI   : on
	dest->writeField(wp,TFI,5);   // TFI
	dest->writeField(wp,0x0,1);   // RLC acknowledged mode
	dest->writeField(wp,0x0,1);   // ALPHA = present
	//dest->writeField(wp,0x0,4);   // ALPHA power control parameter
	dest->writeField(wp,0x0,5);   // GAMMA power control parameter
	dest->writeField(wp,0x1,1);   // Polling Bit
	dest->writeField(wp,0x1,1);   // TA_VALID ???
	dest->writeField(wp,0x1,1);   // switch TIMING_ADVANCE_INDEX = on
	dest->writeField(wp,0xC,4);   // TIMING_ADVANCE_INDEX
	dest->writeField(wp,0x1,1);   // TBF Starting TIME present
	dest->writeField(wp,0xffff,16); // TBF Starting TIME (we should set it in OpenBTS)
	dest->writeField(wp,0x0,1);   // P0 not present
}

void writePUack(BitVector * dest, uint8_t TFI, uint32_t TLLI, unsigned CV, unsigned BSN)
{
	// TODO We should use our implementation of encode RLC/MAC Control messages.
	unsigned wp = 0;
	dest->writeField(wp,0x1,2);  // payload
	dest->writeField(wp,0x0,2);  // Uplink block with TDMA framenumber
	if (CV == 0) dest->writeField(wp,0x1,1);  // Suppl/Polling Bit
	else dest->writeField(wp,0x0,1);  //Suppl/Polling Bit
	dest->writeField(wp,0x1,3);  // Uplink state flag
	
	//dest->writeField(wp,0x0,1);  // Reduced block sequence number
	//dest->writeField(wp,BSN+6,5);  // Radio transaction identifier
	//dest->writeField(wp,0x1,1);  // Final segment
	//dest->writeField(wp,0x1,1);  // Address control

	//dest->writeField(wp,0x0,2);  // Power reduction: 0
	//dest->writeField(wp,TFI,5);  // Temporary flow identifier
	//dest->writeField(wp,0x1,1);  // Direction

	dest->writeField(wp,0x09,6); // MESSAGE TYPE
	dest->writeField(wp,0x0,2);  // Page Mode

	dest->writeField(wp,0x0,2);
	dest->writeField(wp,TFI,5); // Uplink TFI
	dest->writeField(wp,0x0,1);
	
	dest->writeField(wp,0x0,2);  // CS1
	if (CV == 0) dest->writeField(wp,0x1,1);  // FINAL_ACK_INDICATION
	else dest->writeField(wp,0x0,1);  // FINAL_ACK_INDICATION
	dest->writeField(wp,BSN+1,7); // STARTING_SEQUENCE_NUMBER
	// RECEIVE_BLOCK_BITMAP
	for (unsigned i=0; i<8; i++) {
		dest->writeField(wp,0xff,8);
	}
	dest->writeField(wp,0x1,1);  // CONTENTION_RESOLUTION_TLLI = present
	dest->writeField(wp,TLLI,8*4);
	dest->writeField(wp,0x00,4); //spare
}

void RLCMACExtractData(uint8_t* tfi, uint32_t* tlli, RlcMacUplinkDataBlock_t * dataBlock, uint8_t* rlc_data, unsigned* dataIndex)
{
	unsigned blockDataLen = 0;
	unsigned dataOctetNum = 0;
	
	*tfi = dataBlock->TFI;
	if (dataBlock->E_1 == 0) // Extension octet follows immediately
	{
		// TODO We should implement case with several LLC PDU in one data block.
		blockDataLen = dataBlock->LENGTH_INDICATOR[0];
	}
	else
	{
		blockDataLen = 20; // RLC data length without 3 header octets.
		if(dataBlock->TI == 1) // TLLI field is present
		{
			*tlli = dataBlock->TLLI;
			blockDataLen -= 4; // TLLI length
			if (dataBlock->PI == 1) // PFI is present if TI field indicates presence of TLLI
			{
				blockDataLen -= 1; // PFI length
			}
		}
	}

	for (unsigned i = *dataIndex;  i < *dataIndex + blockDataLen; i++)
	{
		rlc_data[i] = dataBlock->RLC_DATA[dataOctetNum];
		dataOctetNum++;
	}
	*dataIndex += blockDataLen;
}

void sendUplinkAck(uint8_t tfi, uint32_t tlli, RlcMacUplinkDataBlock_t * dataBlock)
{
	BitVector packetUplinkAck(23*8);
	packetUplinkAck.unhex("2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b");
	writePUack(&packetUplinkAck, tfi, tlli, dataBlock->CV, dataBlock->BSN);
	COUT("RLCMAC_CONTROL_BLOCK>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>");
	RlcMacDownlink_t * pUA = (RlcMacDownlink_t *)malloc(sizeof(RlcMacUplink_t));
	decode_gsm_rlcmac_downlink(&packetUplinkAck, pUA);
	free(pUA);
	COUT("RLCMAC_CONTROL_BLOCK_END------------------------------");
	sendToOpenBTS(&packetUplinkAck);
}

void RLCMACDispatchDataBlock(unsigned* waitData, BitVector *vector, uint8_t* tfi, uint32_t* tlli, uint8_t* rlc_data, unsigned* dataIndex)
{
	static DataBlockDispatcherState state = WaitSequenceStart;
	static unsigned prevBSN = -1;
	if ((*waitData == 1)&&(state == WaitNextSequence))
	{
		state = WaitSequenceStart;
	}

	COUT("RLCMAC_DATA_BLOCK<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");
	RlcMacUplinkDataBlock_t * dataBlock = (RlcMacUplinkDataBlock_t *)malloc(sizeof(RlcMacUplinkDataBlock_t));
	decode_gsm_rlcmac_uplink_data(vector, dataBlock);
	COUT("RLCMAC_DATA_BLOCK_END------------------------------");	

	switch (state) {
	case WaitSequenceStart: 
		if (dataBlock->BSN == 0)
		{
			*dataIndex = 0;
			RLCMACExtractData(tfi, tlli, dataBlock, rlc_data, dataIndex);
			sendUplinkAck(*tfi, *tlli, dataBlock);
			state = WaitNextBlock;
			prevBSN = 0;
		}
		break;
	case WaitNextBlock:
		if (prevBSN == (dataBlock->BSN - 1))
		{
			RLCMACExtractData(tfi, tlli, dataBlock, rlc_data, dataIndex);
			sendUplinkAck(*tfi, *tlli, dataBlock);
			if (dataBlock->CV == 0)
			{
				// Recieved last Data Block in this sequence.
				sendToGSMTAP(rlc_data, *dataIndex);
				state = WaitNextSequence;
				prevBSN = -1;
				*waitData = 0;
			}
			else
			{
				prevBSN = dataBlock->BSN;
				state = WaitNextBlock;
			}
		}
		else
		{
			// Recieved Data Block with unexpected BSN.
			// We should try to find nesessary Data Block. 
			state = WaitNextBlock;
		}
		break;
	case WaitNextSequence:
		// Now we just ignore all Data Blocks and wait next Uplink TBF
		break;
	}
	free(dataBlock);
}

void RLCMACDispatchControlBlock(unsigned* waitData, BitVector *vector, uint8_t* tfi, uint32_t* tlli, uint8_t* rlc_data, unsigned* dataIndex)
{
	static unsigned shutUp = 0;
	COUT("RLCMAC_CONTROL_BLOCK<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");
	RlcMacUplink_t * controlBlock = (RlcMacUplink_t *)malloc(sizeof(RlcMacUplink_t));
	decode_gsm_rlcmac_uplink(vector, controlBlock);
	COUT("RLCMAC_CONTROL_BLOCK_END------------------------------");
	switch (controlBlock->u.MESSAGE_TYPE) {
	case MT_PACKET_CONTROL_ACK:
		if (shutUp == 0)
		{
			COUT("SEND IA Rest Octets Downlink Assignment>>>>>>>>>>>>>>>>>>");
			BitVector IARestOctetsDownlinkAssignment(23*8);
			IARestOctetsDownlinkAssignment.unhex("2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b");
			writeIARestOctetsDownlinkAssignment(&IARestOctetsDownlinkAssignment, 20, *tlli);
			sendToOpenBTS(&IARestOctetsDownlinkAssignment);
			usleep(500000);
			sendToSGSN(*tfi, *tlli, rlc_data, *dataIndex);
			//sendToGSMTAP(rlc_data, *dataIndex);
			shutUp = 1;
		}
		break;
	case MT_PACKET_DOWNLINK_ACK_NACK:
		COUT("SEND PacketUplinkAssignment>>>>>>>>>>>>>>>>>>");
		BitVector PacketUplinkAssignment(23*8);
		PacketUplinkAssignment.unhex("2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b");
		writePUassignment(&PacketUplinkAssignment, 21, *tlli);
		sendToOpenBTS(&PacketUplinkAssignment);
		*waitData = 1;
		break;
	}
	free(controlBlock);
	
}

void RLCMACDispatchBlock(BitVector *vector)
{
	static uint8_t rlc_data[60];
	static uint8_t *tfi = (uint8_t *)malloc(sizeof(uint8_t));
	static uint32_t *tlli = (uint32_t *)malloc(sizeof(uint32_t));
	static unsigned *dataIndex = (unsigned *)malloc(sizeof(unsigned));
	static unsigned waitData = 1;

	unsigned readIndex = 0;
	unsigned payload = vector->readField(readIndex, 2);

	switch (payload) {
	case RLCMAC_DATA_BLOCK:
		RLCMACDispatchDataBlock(&waitData,vector, tfi, tlli, rlc_data, dataIndex);
		break;
	case RLCMAC_CONTROL_BLOCK:
		RLCMACDispatchControlBlock(&waitData, vector, tfi, tlli, rlc_data, dataIndex);
		break;
	default:
		COUT("Unknown RLCMAC block payload\n");
	}
}

void *RLCMACSocket(void *)
{
	BitVector *vector = new BitVector(23*8);
	GPRSRLCMACSocket.nonblocking();
	while (1) {
		char buf[MAX_UDP_LENGTH];
		int count = GPRSRLCMACSocket.read(buf, 3000);
		if (count>0) {
			vector->unpack((const unsigned char*)buf);
			COUT("Recieve from OpenBTS (MS): " << *vector);
			RLCMACDispatchBlock(vector);
		}
	}
}