/* gsm 04.08 system information (si) encoding and decoding * 3gpp ts 04.08 version 7.21.0 release 1998 / etsi ts 100 940 v7.21.0 */ /* * (C) 2012 Holger Hans Peter Freyther * (C) 2012 by On-Waves * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include #include #include #include int greatest_power_of_2_lesser_or_equal_to(int index) { int power_of_2 = 1; do { power_of_2 *= 2; } while (power_of_2 <= index); /* now go back one step */ return power_of_2 / 2; } static inline int mod(int data, int range) { int res = data % range; while (res < 0) res += range; return res; } /** * Determine at which index to split the ARFCNs to create an * equally size partition for the given range. Return -1 if * no such partition exists. */ int range_enc_find_index(const int range, const int *freqs, const int size) { int i, j, n; const int RANGE_DELTA = (range - 1) / 2; for (i = 0; i < size; ++i) { n = 0; for (j = 0; j < size; ++j) { if (mod(freqs[j] - freqs[i], range) <= RANGE_DELTA) n += 1; } if (n - 1 == (size - 1) / 2) return i; } return -1; } /** * Range encode the ARFCN list. * \param range The range to use. * \param arfcns The list of ARFCNs * \param size The size of the list of ARFCNs * \param out Place to store the W(i) output. */ int range_enc_arfcns(const int range, const int *arfcns, int size, int *out, const int index) { int split_at; int i; /* * The below is a GNU extension and we can remove it when * we move to a quicksort like in-situ swap with the pivot. */ int arfcns_left[size / 2]; int arfcns_right[size / 2]; int l_size; int r_size; int l_origin; int r_origin; /* Test the two recursion anchors and stop processing */ if (size == 0) return 0; if (size == 1) { out[index] = 1 + arfcns[0]; return 0; } /* Now do the processing */ split_at = range_enc_find_index(range, arfcns, size); /* we now know where to split */ out[index] = 1 + arfcns[split_at]; /* calculate the work that needs to be done for the leafs */ l_origin = mod(arfcns[split_at] + ((range - 1) / 2) + 1, range); r_origin = mod(arfcns[split_at] + 1, range); for (i = 0, l_size = 0, r_size = 0; i < size; ++i) { if (mod(arfcns[i] - l_origin, range) < range / 2) arfcns_left[l_size++] = mod(arfcns[i] - l_origin, range); if (mod(arfcns[i] - r_origin, range) < range / 2) arfcns_right[r_size++] = mod(arfcns[i] - r_origin, range); } /* * Now recurse and we need to make this iterative... but as the * tree is balanced the stack will not be too deep. */ range_enc_arfcns(range / 2, arfcns_left, l_size, out, index + greatest_power_of_2_lesser_or_equal_to(index + 1)); range_enc_arfcns((range -1 ) / 2, arfcns_right, r_size, out, index + (2 * greatest_power_of_2_lesser_or_equal_to(index + 1))); return 0; } /* * The easiest is to use f0 == arfcns[0]. This means that under certain * circumstances we can encode less ARFCNs than possible with an optimal f0. * * TODO: Solve the optimisation problem and pick f0 so that the max distance * is the smallest. Taking into account the modulo operation. I think picking * size/2 will be the optimal arfcn. */ /** * This implements the range determination as described in GSM 04.08 J4. The * result will be a base frequency f0 and the range to use. Note that for range * 1024 encoding f0 always refers to ARFCN 0 even if it is not an element of * the arfcns list. * * \param[in] arfcns The input frequencies, they must be sorted, lowest number first * \param[in] size The length of the array * \param[out] f0 The selected F0 base frequency. It might not be inside the list */ int range_enc_determine_range(const int *arfcns, const int size, int *f0) { int max = 0; /* * Go for the easiest. And pick arfcns[0] == f0. */ max = arfcns[size - 1] - arfcns[0]; *f0 = arfcns[0]; if (max < 128 && size <= 29) return ARFCN_RANGE_128; if (max < 256 && size <= 22) return ARFCN_RANGE_256; if (max < 512 && size <= 18) return ARFCN_RANGE_512; if (max < 1024 && size <= 17) { *f0 = 0; return ARFCN_RANGE_1024; } return ARFCN_RANGE_INVALID; } static void write_orig_arfcn(uint8_t *chan_list, int f0) { chan_list[0] |= (f0 >> 9) & 1; chan_list[1] = (f0 >> 1); chan_list[2] = (f0 & 1) << 7; } static void write_all_wn(uint8_t *chan_list, int bit_offs, int *w, int w_size, int w1_len) { int octet_offs = 0; /* offset into chan_list */ int wk_len = w1_len; /* encoding size in bits of w[k] */ int k; /* 1 based */ int level = 0; /* tree level, top level = 0 */ int lvl_left = 1; /* nodes per tree level */ /* W(2^i) to W(2^(i+1)-1) are on w1_len-i bits when present */ for (k = 1; k <= w_size; k++) { int wk_left = wk_len; DEBUGP(DRR, "k=%d, wk_len=%d, offs=%d:%d, level=%d, " "lvl_left=%d\n", k, wk_len, octet_offs, bit_offs, level, lvl_left); while (wk_left > 0) { int cur_bits = 8 - bit_offs; int cur_mask; int wk_slice; if (cur_bits > wk_left) cur_bits = wk_left; cur_mask = ((1 << cur_bits) - 1); DEBUGP(DRR, " wk_left=%d, cur_bits=%d, offs=%d:%d\n", wk_left, cur_bits, octet_offs, bit_offs); /* advance */ wk_left -= cur_bits; bit_offs += cur_bits; /* right aligned wk data for current out octet */ wk_slice = (w[k-1] >> wk_left) & cur_mask; /* cur_bits now contains the number of bits * that are to be copied from wk to the chan_list. * wk_left is set to the number of bits that must * not yet be copied. * bit_offs points after the bit area that is going to * be overwritten: * * wk_left * | * v * wk: WWWWWWWWWWW * |||||<-- wk_slice, cur_bits=5 * --WWWWW- * ^ * | * bit_offs */ DEBUGP(DRR, " wk=%02x, slice=%02x/%02x, cl=%02x\n", w[k-1], wk_slice, cur_mask, wk_slice << (8 - bit_offs)); chan_list[octet_offs] &= ~(cur_mask << (8 - bit_offs)); chan_list[octet_offs] |= wk_slice << (8 - bit_offs); /* adjust output */ if (bit_offs == 8) { bit_offs = 0; octet_offs += 1; } } /* adjust bit sizes */ lvl_left -= 1; if (!lvl_left) { /* completed tree level, advance to next */ level += 1; lvl_left = 1 << level; wk_len -= 1; } } } int range_enc_range128(uint8_t *chan_list, int f0, int *w) { chan_list[0] = 0x8C; write_orig_arfcn(chan_list, f0); write_all_wn(&chan_list[2], 1, w, 28, 7); return 0; } int range_enc_range256(uint8_t *chan_list, int f0, int *w) { chan_list[0] = 0x8A; write_orig_arfcn(chan_list, f0); write_all_wn(&chan_list[2], 1, w, 21, 8); return 0; } int range_enc_range512(uint8_t *chan_list, int f0, int *w) { chan_list[0] = 0x88; write_orig_arfcn(chan_list, f0); write_all_wn(&chan_list[2], 1, w, 17, 9); return 0; } int range_enc_range1024(uint8_t *chan_list, int f0, int f0_included, int *w) { chan_list[0] = 0x80 | (f0_included << 2); write_all_wn(&chan_list[0], 6, w, 16, 10); return 0; } int range_enc_filter_arfcns(int *arfcns, const int size, const int f0, int *f0_included) { int i, j = 0; *f0_included = 0; for (i = 0; i < size; ++i) { /* * Appendix J.4 says the following: * All frequencies except F(0), minus F(0) + 1. * I assume we need to exclude it here. */ if (arfcns[i] == f0) { *f0_included = 1; continue; } arfcns[j++] = mod(arfcns[i] - (f0 + 1), 1024); } return j; }