/*! \file linuxlist.h * * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole llists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ #pragma once /*! \defgroup linuxlist Simple doubly linked list implementation * @{ * \file linuxlist.h */ #include #include #ifndef inline #define inline __inline__ #endif static inline void prefetch(const void *x) {;} /*! Cast a member of a structure out to the containing structure. * \param[in] ptr the pointer to the member. * \param[in] type the type of the container struct this is embedded in. * \param[in] member the name of the member within the struct. */ #define container_of(ptr, type, member) ({ \ const typeof( ((type *)0)->member ) *__mptr = (ptr); \ (type *)( (char *)__mptr - offsetof(type, member) );}) /*! * These are non-NULL pointers that will result in page faults * under normal circumstances, used to verify that nobody uses * non-initialized llist entries. */ #define LLIST_POISON1 ((void *) 0x00100100) #define LLIST_POISON2 ((void *) 0x00200200) /*! (double) linked list header structure */ struct llist_head { /*! Pointer to next and previous item */ struct llist_head *next, *prev; }; /*! Define a new llist_head pointing to a given llist_head. * \param[in] name another llist_head to be pointed. */ #define LLIST_HEAD_INIT(name) { &(name), &(name) } /*! Define a statically-initialized variable of type llist_head. * \param[in] name variable (symbol) name. */ #define LLIST_HEAD(name) \ struct llist_head name = LLIST_HEAD_INIT(name) /*! Initialize a llist_head to point back to itself. * \param[in] ptr llist_head to be initialized. */ #define INIT_LLIST_HEAD(ptr) do { \ (ptr)->next = (ptr); (ptr)->prev = (ptr); \ } while (0) /* * Insert a new entry between two known consecutive entries. * * This is only for internal llist manipulation where we know * the prev/next entries already! */ static inline void __llist_add(struct llist_head *_new, struct llist_head *prev, struct llist_head *next) { next->prev = _new; _new->next = next; _new->prev = prev; prev->next = _new; } /*! Add a new entry into a linked list (at head). * \param _new the entry to be added. * \param head llist_head to prepend the element to. * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void llist_add(struct llist_head *_new, struct llist_head *head) { __llist_add(_new, head, head->next); } /*! Add a new entry into a linked list (at tail). * \param _new the entry to be added. * \param head llist_head to append the element to. * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void llist_add_tail(struct llist_head *_new, struct llist_head *head) { __llist_add(_new, head->prev, head); } /* * Delete a llist entry by making the prev/next entries * point to each other. * * This is only for internal llist manipulation where we know * the prev/next entries already! */ static inline void __llist_del(struct llist_head * prev, struct llist_head * next) { next->prev = prev; prev->next = next; } /*! Delete a single entry from a linked list. * \param entry the element to delete. * * Note: llist_empty on entry does not return true after this, the entry is * in an undefined state. */ static inline void llist_del(struct llist_head *entry) { __llist_del(entry->prev, entry->next); entry->next = (struct llist_head *)LLIST_POISON1; entry->prev = (struct llist_head *)LLIST_POISON2; } /*! Delete a single entry from a linked list and reinitialize it. * \param entry the element to delete and reinitialize. */ static inline void llist_del_init(struct llist_head *entry) { __llist_del(entry->prev, entry->next); INIT_LLIST_HEAD(entry); } /*! Delete from one llist and add as another's head. * \param llist the entry to move. * \param head the head that will precede our entry. */ static inline void llist_move(struct llist_head *llist, struct llist_head *head) { __llist_del(llist->prev, llist->next); llist_add(llist, head); } /*! Delete from one llist and add as another's tail. * \param llist the entry to move. * \param head the head that will follow our entry. */ static inline void llist_move_tail(struct llist_head *llist, struct llist_head *head) { __llist_del(llist->prev, llist->next); llist_add_tail(llist, head); } /*! Test whether a linked list is empty. * \param[in] head the llist to test. * \returns 1 if the list is empty, 0 otherwise. */ static inline int llist_empty(const struct llist_head *head) { return head->next == head; } static inline void __llist_splice(struct llist_head *llist, struct llist_head *head) { struct llist_head *first = llist->next; struct llist_head *last = llist->prev; struct llist_head *at = head->next; first->prev = head; head->next = first; last->next = at; at->prev = last; } /*! Join two linked lists. * \param llist the new linked list to add. * \param head the place to add llist within the other list. */ static inline void llist_splice(struct llist_head *llist, struct llist_head *head) { if (!llist_empty(llist)) __llist_splice(llist, head); } /*! Join two llists and reinitialise the emptied llist. * \param llist the new linked list to add. * \param head the place to add it within the first llist. * * The llist is reinitialised. */ static inline void llist_splice_init(struct llist_head *llist, struct llist_head *head) { if (!llist_empty(llist)) { __llist_splice(llist, head); INIT_LLIST_HEAD(llist); } } /*! Get the struct containing this list entry. * \param ptr the llist_head pointer. * \param type the type of the struct this is embedded in. * \param member the name of the llist_head within the struct. */ #define llist_entry(ptr, type, member) \ container_of(ptr, type, member) /*! Get the first element from a linked list. * \param ptr the list head to take the element from. * \param type the type of the struct this is embedded in. * \param member the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define llist_first_entry(ptr, type, member) \ llist_entry((ptr)->next, type, member) /*! Get the last element from a list. * \param ptr the list head to take the element from. * \param type the type of the struct this is embedded in. * \param member the name of the llist_head within the struct. * * Note, that list is expected to be not empty. */ #define llist_last_entry(ptr, type, member) \ llist_entry((ptr)->prev, type, member) /*! Get the first element from a list, or NULL. * \param ptr the list head to take the element from. * \param type the type of the struct this is embedded in. * \param member the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. */ #define llist_first_entry_or_null(ptr, type, member) \ (!llist_empty(ptr) ? llist_first_entry(ptr, type, member) : NULL) /*! Iterate over a linked list. * \param pos the llist_head to use as a loop counter. * \param head the head of the list over which to iterate. */ #define llist_for_each(pos, head) \ for (pos = (head)->next, prefetch(pos->next); pos != (head); \ pos = pos->next, prefetch(pos->next)) /*! Iterate over a linked list (no prefetch). * \param pos the llist_head to use as a loop counter. * \param head the head of the list over which to iterate. * * This variant differs from llist_for_each() in that it's the * simplest possible llist iteration code, no prefetching is done. * Use this for code that knows the llist to be very short (empty * or 1 entry) most of the time. */ #define __llist_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /*! Iterate over a linked list backwards. * \param pos the llist_head to use as a loop counter. * \param head the head of the list over which to iterate. */ #define llist_for_each_prev(pos, head) \ for (pos = (head)->prev, prefetch(pos->prev); pos != (head); \ pos = pos->prev, prefetch(pos->prev)) /*! Iterate over a linked list, safe against removal of llist entry. * \param pos the llist_head to use as a loop counter. * \param n another llist_head to use as temporary storage. * \param head the head of the list over which to iterate. */ #define llist_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /*! Iterate over a linked list of a given type. * \param pos the 'type *' to use as a loop counter. * \param head the head of the list over which to iterate. * \param member the name of the llist_head within the struct pos. */ #define llist_for_each_entry(pos, head, member) \ for (pos = llist_entry((head)->next, typeof(*pos), member), \ prefetch(pos->member.next); \ &pos->member != (head); \ pos = llist_entry(pos->member.next, typeof(*pos), member), \ prefetch(pos->member.next)) /*! Iterate backwards over a linked list of a given type. * \param pos the 'type *' to use as a loop counter. * \param head the head of the list over which to iterate. * \param member the name of the llist_head within the struct pos. */ #define llist_for_each_entry_reverse(pos, head, member) \ for (pos = llist_entry((head)->prev, typeof(*pos), member), \ prefetch(pos->member.prev); \ &pos->member != (head); \ pos = llist_entry(pos->member.prev, typeof(*pos), member), \ prefetch(pos->member.prev)) /*! Iterate over a linked list of a given type, * continuing after an existing point. * \param pos the 'type *' to use as a loop counter. * \param head the head of the list over which to iterate. * \param member the name of the llist_head within the struct pos. */ #define llist_for_each_entry_continue(pos, head, member) \ for (pos = llist_entry(pos->member.next, typeof(*pos), member), \ prefetch(pos->member.next); \ &pos->member != (head); \ pos = llist_entry(pos->member.next, typeof(*pos), member), \ prefetch(pos->member.next)) /*! Iterate over llist of given type, safe against removal of * non-consecutive(!) llist entries. * \param pos the 'type *' to use as a loop counter. * \param n another 'type *' to use as temporary storage. * \param head the head of the list over which to iterate. * \param member the name of the llist_head within the struct pos. */ #define llist_for_each_entry_safe(pos, n, head, member) \ for (pos = llist_entry((head)->next, typeof(*pos), member), \ n = llist_entry(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = n, n = llist_entry(n->member.next, typeof(*n), member)) /*! Iterate over an rcu-protected llist. * \param pos the llist_head to use as a loop counter. * \param head the head of the list over which to iterate. */ #define llist_for_each_rcu(pos, head) \ for (pos = (head)->next, prefetch(pos->next); pos != (head); \ pos = pos->next, ({ smp_read_barrier_depends(); 0;}), prefetch(pos->next)) #define __llist_for_each_rcu(pos, head) \ for (pos = (head)->next; pos != (head); \ pos = pos->next, ({ smp_read_barrier_depends(); 0;})) /*! Iterate over an rcu-protected llist, safe against removal of llist entry. * \param pos the llist_head to use as a loop counter. * \param n another llist_head to use as temporary storage. * \param head the head of the list over which to iterate. */ #define llist_for_each_safe_rcu(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, ({ smp_read_barrier_depends(); 0;}), n = pos->next) /*! Iterate over an rcu-protected llist of a given type. * \param pos the 'type *' to use as a loop counter. * \param head the head of the list over which to iterate. * \param member the name of the llist_struct within the struct. */ #define llist_for_each_entry_rcu(pos, head, member) \ for (pos = llist_entry((head)->next, typeof(*pos), member), \ prefetch(pos->member.next); \ &pos->member != (head); \ pos = llist_entry(pos->member.next, typeof(*pos), member), \ ({ smp_read_barrier_depends(); 0;}), \ prefetch(pos->member.next)) /*! Iterate over an rcu-protected llist, continuing after existing point. * \param pos the llist_head to use as a loop counter. * \param head the head of the list over which to iterate. */ #define llist_for_each_continue_rcu(pos, head) \ for ((pos) = (pos)->next, prefetch((pos)->next); (pos) != (head); \ (pos) = (pos)->next, ({ smp_read_barrier_depends(); 0;}), prefetch((pos)->next)) /*! Count number of llist items by iterating. * \param head the llist head to count items of. * \returns Number of items. * * This function is not efficient, mostly useful for small lists and non time * critical cases like unit tests. */ static inline unsigned int llist_count(const struct llist_head *head) { struct llist_head *entry; unsigned int i = 0; llist_for_each(entry, head) i++; return i; } /*! Double linked lists with a single pointer list head. * Mostly useful for hash tables where the two pointer list head is * too wasteful. * You lose the ability to access the tail in O(1). */ struct hlist_head { struct hlist_node *first; }; struct hlist_node { struct hlist_node *next, **pprev; }; #define HLIST_HEAD_INIT { .first = NULL } #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) static inline void INIT_HLIST_NODE(struct hlist_node *h) { h->next = NULL; h->pprev = NULL; } #define READ_ONCE(x) x #define WRITE_ONCE(a, b) a = b /*! Has node been removed from list and reinitialized?. * \param[in] h: Node to be checked * \return 1 if node is unhashed; 0 if not * * Not that not all removal functions will leave a node in unhashed * state. For example, hlist_nulls_del_init_rcu() does leave the * node in unhashed state, but hlist_nulls_del() does not. */ static inline int hlist_unhashed(const struct hlist_node *h) { return !h->pprev; } /*! Version of hlist_unhashed for lockless use. * \param[in] n Node to be checked * \return 1 if node is unhashed; 0 if not * * This variant of hlist_unhashed() must be used in lockless contexts * to avoid potential load-tearing. The READ_ONCE() is paired with the * various WRITE_ONCE() in hlist helpers that are defined below. */ static inline int hlist_unhashed_lockless(const struct hlist_node *h) { return !READ_ONCE(h->pprev); } /*!Is the specified hlist_head structure an empty hlist?. * \param[in] h Structure to check. * \return 1 if hlist is empty; 0 if not */ static inline int hlist_empty(const struct hlist_head *h) { return !READ_ONCE(h->first); } static inline void __hlist_del(struct hlist_node *n) { struct hlist_node *next = n->next; struct hlist_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (next) WRITE_ONCE(next->pprev, pprev); } /*! Delete the specified hlist_node from its list. * \param[in] n: Node to delete. * * Note that this function leaves the node in hashed state. Use * hlist_del_init() or similar instead to unhash @n. */ static inline void hlist_del(struct hlist_node *n) { __hlist_del(n); n->next = (struct hlist_node *)LLIST_POISON1; n->pprev = (struct hlist_node **)LLIST_POISON2; } /*! Delete the specified hlist_node from its list and initialize. * \param[in] n Node to delete. * * Note that this function leaves the node in unhashed state. */ static inline void hlist_del_init(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); INIT_HLIST_NODE(n); } } /*! add a new entry at the beginning of the hlist. * \param[in] n new entry to be added * \param[in] h hlist head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; WRITE_ONCE(n->next, first); if (first) WRITE_ONCE(first->pprev, &n->next); WRITE_ONCE(h->first, n); WRITE_ONCE(n->pprev, &h->first); } /*! add a new entry before the one specified. * @n: new entry to be added * @next: hlist node to add it before, which must be non-NULL */ static inline void hlist_add_before(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); WRITE_ONCE(n->next, next); WRITE_ONCE(next->pprev, &n->next); WRITE_ONCE(*(n->pprev), n); } /*! add a new entry after the one specified * \param[in] n new entry to be added * \param[in] prev hlist node to add it after, which must be non-NULL */ static inline void hlist_add_behind(struct hlist_node *n, struct hlist_node *prev) { WRITE_ONCE(n->next, prev->next); WRITE_ONCE(prev->next, n); WRITE_ONCE(n->pprev, &prev->next); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } /*! create a fake hlist consisting of a single headless node. * \param[in] n Node to make a fake list out of * * This makes @n appear to be its own predecessor on a headless hlist. * The point of this is to allow things like hlist_del() to work correctly * in cases where there is no list. */ static inline void hlist_add_fake(struct hlist_node *n) { n->pprev = &n->next; } /*! Is this node a fake hlist?. * \param[in] h Node to check for being a self-referential fake hlist. */ static inline bool hlist_fake(struct hlist_node *h) { return h->pprev == &h->next; } /*!is node the only element of the specified hlist?. * \param[in] n Node to check for singularity. * \param[in] h Header for potentially singular list. * * Check whether the node is the only node of the head without * accessing head, thus avoiding unnecessary cache misses. */ static inline bool hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) { return !n->next && n->pprev == &h->first; } /*! Move an hlist. * \param[in] old hlist_head for old list. * \param[in] new hlist_head for new list. * * Move a list from one list head to another. Fixup the pprev * reference of the first entry if it exists. */ static inline void hlist_move_list(struct hlist_head *old, struct hlist_head *_new) { _new->first = old->first; if (_new->first) _new->first->pprev = &_new->first; old->first = NULL; } #define hlist_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_for_each(pos, head) \ for (pos = (head)->first; pos ; pos = pos->next) #define hlist_for_each_safe(pos, n, head) \ for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ pos = n) #define hlist_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ }) /*! iterate over list of given type. * \param[out] pos the type * to use as a loop cursor. * \param[in] head the head for your list. * \param[in] member the name of the hlist_node within the struct. */ #define hlist_for_each_entry(pos, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /*! iterate over a hlist continuing after current point. * \param[out] pos the type * to use as a loop cursor. * \param[in] member the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue(pos, member) \ for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /*! iterate over a hlist continuing from current point. * \param[out] pos the type * to use as a loop cursor. * \param[in] member the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from(pos, member) \ for (; pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /*! hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry. * \param[out] pos the type * to use as a loop cursor. * \param[out] n a &struct hlist_node to use as temporary storage * \param[in] head the head for your list. * \param[in] member the name of the hlist_node within the struct */ #define hlist_for_each_entry_safe(pos, n, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ pos && ({ n = pos->member.next; 1; }); \ pos = hlist_entry_safe(n, typeof(*pos), member)) /*! * @} */