/* -*- c++ -*- */ /* * @file * @author (C) 2009-2017 by Piotr Krysik * @section LICENSE * * Gr-gsm is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * Gr-gsm is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with gr-gsm; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_GSM_RECEIVER_IMPL_H #define INCLUDED_GSM_RECEIVER_IMPL_H #include #include #include #include #include namespace gr { namespace gsm { class receiver_impl : public receiver { private: unsigned int d_c0_burst_start; float d_c0_signal_dbm; /**@name Configuration of the receiver */ //@{ const int d_OSR; ///< oversampling ratio bool d_process_uplink; const int d_chan_imp_length; ///< channel impulse length float d_signal_dbm; std::vector d_tseq_nums; ///< stores training sequence numbers for channels different than C0 std::vector d_cell_allocation; ///< stores cell allocation - absolute rf channel numbers (ARFCNs) assigned to the given cell. The variable should at least contain C0 channel number. //@} gr_complex d_sch_training_seq[N_SYNC_BITS]; /// d_freq_offset_vals; /**@name Identifiers of the BTS extracted from the SCH burst */ //@{ int d_ncc; ///< network color code int d_bcc; ///< base station color code //@} /**@name Internal state of the gsm receiver */ //@{ enum states { fcch_search, sch_search, // synchronization search part synchronized // receiver is synchronized in this state } d_state; //@} /**@name Variables which make internal state in the "synchronized" state */ //@{ burst_counter d_burst_nr; ///< frame number and timeslot number channel_configuration d_channel_conf; ///< mapping of burst_counter to burst_type //@} unsigned d_failed_sch; ///< number of subsequent erroneous SCH bursts /** Function whis is used to search a FCCH burst and to compute frequency offset before * "synchronized" state of the receiver * * @param input vector with input signal * @param nitems number of samples in the input vector * @return */ bool find_fcch_burst(const gr_complex *input, const int nitems, double & computed_freq_offset); /** Computes frequency offset from FCCH burst samples * * @param[in] input vector with input samples * @param[in] first_sample number of the first sample of the FCCH busrt * @param[in] last_sample number of the last sample of the FCCH busrt * @param[out] computed_freq_offset contains frequency offset estimate if FCCH burst was located * @return true if frequency offset was faound */ double compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample); /** Computes angle between two complex numbers * * @param val1 first complex number * @param val2 second complex number * @return */ inline float compute_phase_diff(gr_complex val1, gr_complex val2); /** Function whis is used to get near to SCH burst * * @param nitems number of samples in the gsm_receiver's buffer * @return true if SCH burst is near, false otherwise */ bool reach_sch_burst(const int nitems); /** Extracts channel impulse response from a SCH burst and computes first sample number of this burst * * @param input vector with input samples * @param chan_imp_resp complex vector where channel impulse response will be stored * @return number of first sample of the burst */ int get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp); /** MLSE detection of a burst bits * * Detects bits of burst using viterbi algorithm. * @param input vector with input samples * @param chan_imp_resp vector with the channel impulse response * @param burst_start number of the first sample of the burst * @param output_binary vector with output bits */ void detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary); /** Encodes differentially input bits and maps them into MSK states * * @param input vector with input bits * @param nitems number of samples in the "input" vector * @param gmsk_output bits mapped into MSK states * @param start_point first state */ void gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point); /** Correlates MSK mapped sequence with input signal * * @param sequence MKS mapped sequence * @param length length of the sequence * @param input_signal vector with input samples * @return correlation value */ gr_complex correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input); /** Computes autocorrelation of input vector for positive arguments * * @param input vector with input samples * @param out output vector * @param nitems length of the input vector */ inline void autocorrelation(const gr_complex * input, gr_complex * out, int nitems); /** Filters input signal through channel impulse response * * @param input vector with input samples * @param nitems number of samples to pass through filter * @param filter filter taps - channel impulse response * @param filter_length nember of filter taps * @param output vector with filtered samples */ inline void mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output); /** Extracts channel impulse response from a normal burst and computes first sample number of this burst * * @param input vector with input samples * @param chan_imp_resp complex vector where channel impulse response will be stored * @param search_range possible absolute offset of a channel impulse response start * @param bcc base station color code - number of a training sequence * @return first sample number of normal burst */ int get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, float *corr_max, int bcc); /** * Sends burst through a C0 (for burst from C0 channel) or Cx (for other bursts) message port * * @param burst_nr - frame number of the burst * @param burst_binary - content of the burst * @b_type - type of the burst */ void send_burst(burst_counter burst_nr, const unsigned char * burst_binary, uint8_t burst_type, unsigned int input_nr); /** * Configures burst types in different channels */ void configure_receiver(); /* State machine handlers */ void fcch_search_handler(gr_complex *input, int noutput_items); void sch_search_handler(gr_complex *input, int noutput_items); void synchronized_handler(gr_complex *input, gr_vector_const_void_star &input_items, int noutput_items); public: receiver_impl(int osr, const std::vector &cell_allocation, const std::vector &tseq_nums, bool process_uplink); ~receiver_impl(); int work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items); virtual void set_cell_allocation(const std::vector &cell_allocation); virtual void set_tseq_nums(const std::vector & tseq_nums); virtual void reset(); }; } // namespace gsm } // namespace gr #endif /* INCLUDED_GSM_RECEIVER_IMPL_H */